Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы статистика.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.85 Mб
Скачать

15. Определение среднего уровня ряда для интервальных и моментальных рядов

Для временных рядов, не имеющих тренда (стационарных), представляет интерес определение их среднего уровня.

Средний уровень интервального ряда рассчитывается как простое среднее арифметическое

где - значение временного ряда в интервале t;

– число уровней временного ряда.

Моментные ряды отличаются от интервальных принципиальной неполнотой информации. Предположим, что уровни соответсвуют моментам наблюдения . Исследуемая величина изменяется в период между наблюдениями, поэтому средний уровень моментного ряда может быть оценен лишь приближенно. Для этой цели используется среднее хронологическое

Показатели динамики – это величины, характеризующие изменения уровней временного ряда. К ним относятся абсолютный прирост, коэффициент (темп) роста и коэффициент (темп) прироста.

Различают базисные и цепные показатели динамики. Базисные показатели – это результат сравнения текущего уровня ряда с одним фиксированным уровнем, принятым за базу (обычно это начальный уровень ряда). Цепные показатели – это результат сравнения текущего уровня ряда с предшествующим уровнем.

Формулы для расчета показателей представлены в табл.

Таблица

Показатели динамики

Базисные

Цепные

Абсолютный прирост

Ai=yi-y1

ai=yi-yi-1

Коэффициент (темп) роста

Li=yi/y1 (*100 %)

li=yi/yi-1 (*100 %)

Коэффициент (темп) прироста

Ki=(yi-y1)/y1=Li-1 (*100 %)

ki=(yi-yi-1)/yi-1 =li-1 (*100 %)

17. Средний абсолютный прирост и средний коэффициент роста

Средний абсолютный прирост равен

Рассмотрим определение среднего коэффициента роста (цепного)

Предположим, что имеется временной ряд y1,y2,…,yn.

Тогда (i=2,…,n) – цепные коэффициенты роста.

Средний коэффициент роста равен

19. Сглаживание временного ряда методом скользящего среднего

Одним из методов выделения тренда является сглаживание временного ряда с помощью скользящего среднего. Метод состоит в замене уровней ряда динамики средними арифметическими- за определенный интервал (окно сглаживания), длина которого определена заранее. При этом сам выбранный интервал времени «скользит» вдоль ряда.

Например, при к=2, 2к+1=5 и

Получаемый таким образом ряд скользящих средних ведет себя более гладко, чем исходный ряд, из-за усреднения отклонений ряда. Действительно, если индивидуальный разброс значений члена временного ряда около своего среднего значения m характеризуется дисперсией , то разброс средней из 2к+1 членов временного ряда около того же значения m будет характеризоваться существенно меньшей величиной дисперсии, равной /(2к+1).

В результате сглаживания получается ряд с меньшим количеством уровней, так как крайние значения теряются.