
- •1.Электрический заряд.Его дискретность.Закон сохранения электрического заряда. Закон кулона в векторном и скалярном виде.
- •5. Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.
- •11. Получите выражение для потенциала поля равномерно заряженной тонкой сферы. Считайте потенциал равным 0 в бесконечности. Нарисуйте график φ(r) внутри и вне сферы.
- •12. Получите выражение для потенциала бесконечно длинной равномерно заряженной нити. Считайте потенциал равным 0 на расстоянии r0 от нити. Нарисуйте график φ(r).
- •13. Получите выражение для потенциала бесконечно равномерно заряженной плоскости в зависимости от расстояния X от плоскости. Считайте потенциал плоскости равным φ0. Нарисуйте график φ(X).
- •15.Электроемкость уединенного проводника. Выражение для электроемкости сферы.
- •16.Электроемкость конденсатора. Выражение для электроемкости плоского конденсатора.
- •17. Получите выражение для электроемкости при параллельном соединении конденсаторов.
- •19. Диполь и его электрический момент. Напряженность и потенциал поля диполя на его продольной оси. Расстояние от диполя много больше длины диполя.
- •20. Поведение диполя во внешнем однородном электрическом поле. Момент сил, действующих на диполь со стороны поля.
- •21. Поляризованность диэлектрика(вектор поляризации). Его связь с напряженностью поля в диэлектрике. Электрическая восприимчивость.
- •22. Энергия заряженного конденсатора.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •24.Энергия электростатического поля. Получите выражение для объемной плоскости энергии на примере плоского конденсатора.
- •25. Сила тока. Плотность тока. Выражение для плотности тока через среднюю скорость носителей тока и их концентрацию.
- •26. Постоянный электрический ток. Сторонние силы и эдс источника тока.
- •28. Закон Ома в локальной (дифференциальной) форме. Удельное сопротивление и удельная проводимость.
- •29.Электронная(классическая) теория электропроводности металлов. Основные предположения теории и вывод закона Ома в локальной(дифференциальной) форме.
- •30. Закон Джоуля-Ленца. Формулы для вычисления мощности, выделяющейся на сопротивлении.
- •32. Электрическое сопротивление при параллельном и последовательном соединении проводников.
- •33.Сила Лоренца (в векторной и скалярной формах). Вектор магнитной индукции, его размерность.
- •34. Движение заряженных частиц в магнитном поле. Радиус кривизны и шаг винтовой траектории движения.
- •36. Получите на основе закона Био-Савара выражение для нахождения индукции магнитного поля на оси и в центре кругового витка с током. Магнитный момент витка с током.
- •38. Магнитное поле соленоида. Выражение для индукции магнитного поля внутри бесконечно длинного соленоида.
- •39.Действие магнитного поля на ток. Сила, действующая на элемент тока(закон ампера) в векторной и скалярной формах.
- •40.Действие магнитного поля на ток. Сила, действующая на прямолинейный проводник с током(закон Ампера).
- •41.Сила взаимодействия(на единицу длины) между двумя прямыми параллельными проводниками с токами для одинаково и противоположно направленных токов.
- •42.Вращающий момент, действующий на контур с током в однородном магнитном поле.
- •43.Сила,действующая на контур с током,в неоднородном магнитном поле.
- •44.Поведение витка с током во внешнем однородном магнитном поле. Устойчивое и неустойчивое положение равновесия витка.
28. Закон Ома в локальной (дифференциальной) форме. Удельное сопротивление и удельная проводимость.
В
изотропном проводнике (в данном случае
с постоянным сопротивлением) носители
зарядов движутся в направлении действия
силы, т.е. вектор плотности тока
и
вектор напряженности поля
коллинеарны.
Исходя из закона Ома имеем:
А
мы знаем, что
или
.
Отсюда можно записать
|
|
это запись закона Ома в дифференциальной форме.
Здесь
– удельная
электропроводность.
(Ом.м)- удельное сопротивление – это характеристика электрических свойств металла, оно зависит от природы металла и от его температуры. По смыслу - это электрическое сопротивление единицы длины проводника с единичной площадью поперечного сечения. С увеличением температуры сопротивление металлов увеличивается. При умеренных температурах удельное сопротивление линейно зависит от температуры:
|
зависимость удельного сопротивления металлов от температуры; 0 – удельное сопротивление при 0оС, - температурный коэффициент сопротивления, определяющий относительное изменение сопротивления при нагревании проводника на один градус. |
Удельная проводимость - это мера способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде
29.Электронная(классическая) теория электропроводности металлов. Основные предположения теории и вывод закона Ома в локальной(дифференциальной) форме.
В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока и вектор напряженности поля коллинеарны. Исходя из закона Ома имеем:
А мы знаем, что или . Отсюда можно записать
|
|
это запись закона Ома в дифференциальной форме.
Здесь – удельная электропроводность.
(Ом.м)- удельное сопротивление
В рамках элементарной кинетической теории полагаем, что валентные электроны (электроны проводимости) металлов представляют собой одинаковые твердые сферы, двигаются они по прямым линиям до столкновения друг с другом, время контакта частиц пренебрежимо мало по сравнению с временем "свободного" движения.
Объемную концентрацию электронов проводимости можно оценить выражением:
|
|
где
-
объемная плотность металла (кг/м3),
Z - валентность химического элемента,
Na -
число Авогадро, А - относительная атомная
масса элемента.
Заряд электрона е =-1,6*10-19 Кл, масса электрона me = 0,91*10-30 кг. Величину "е" ниже будем считать положительной, а знак заряда электрона будем учитывать непосредственно в формулах.
Плотность электронного газа:
|
|
значительно больше плотности обычных газов при нормальных условиях.