
- •1.Электрический заряд.Его дискретность.Закон сохранения электрического заряда. Закон кулона в векторном и скалярном виде.
- •5. Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.
- •11. Получите выражение для потенциала поля равномерно заряженной тонкой сферы. Считайте потенциал равным 0 в бесконечности. Нарисуйте график φ(r) внутри и вне сферы.
- •12. Получите выражение для потенциала бесконечно длинной равномерно заряженной нити. Считайте потенциал равным 0 на расстоянии r0 от нити. Нарисуйте график φ(r).
- •13. Получите выражение для потенциала бесконечно равномерно заряженной плоскости в зависимости от расстояния X от плоскости. Считайте потенциал плоскости равным φ0. Нарисуйте график φ(X).
- •15.Электроемкость уединенного проводника. Выражение для электроемкости сферы.
- •16.Электроемкость конденсатора. Выражение для электроемкости плоского конденсатора.
- •17. Получите выражение для электроемкости при параллельном соединении конденсаторов.
- •19. Диполь и его электрический момент. Напряженность и потенциал поля диполя на его продольной оси. Расстояние от диполя много больше длины диполя.
- •20. Поведение диполя во внешнем однородном электрическом поле. Момент сил, действующих на диполь со стороны поля.
- •21. Поляризованность диэлектрика(вектор поляризации). Его связь с напряженностью поля в диэлектрике. Электрическая восприимчивость.
- •22. Энергия заряженного конденсатора.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •24.Энергия электростатического поля. Получите выражение для объемной плоскости энергии на примере плоского конденсатора.
- •25. Сила тока. Плотность тока. Выражение для плотности тока через среднюю скорость носителей тока и их концентрацию.
- •26. Постоянный электрический ток. Сторонние силы и эдс источника тока.
- •28. Закон Ома в локальной (дифференциальной) форме. Удельное сопротивление и удельная проводимость.
- •29.Электронная(классическая) теория электропроводности металлов. Основные предположения теории и вывод закона Ома в локальной(дифференциальной) форме.
- •30. Закон Джоуля-Ленца. Формулы для вычисления мощности, выделяющейся на сопротивлении.
- •32. Электрическое сопротивление при параллельном и последовательном соединении проводников.
- •33.Сила Лоренца (в векторной и скалярной формах). Вектор магнитной индукции, его размерность.
- •34. Движение заряженных частиц в магнитном поле. Радиус кривизны и шаг винтовой траектории движения.
- •36. Получите на основе закона Био-Савара выражение для нахождения индукции магнитного поля на оси и в центре кругового витка с током. Магнитный момент витка с током.
- •38. Магнитное поле соленоида. Выражение для индукции магнитного поля внутри бесконечно длинного соленоида.
- •39.Действие магнитного поля на ток. Сила, действующая на элемент тока(закон ампера) в векторной и скалярной формах.
- •40.Действие магнитного поля на ток. Сила, действующая на прямолинейный проводник с током(закон Ампера).
- •41.Сила взаимодействия(на единицу длины) между двумя прямыми параллельными проводниками с токами для одинаково и противоположно направленных токов.
- •42.Вращающий момент, действующий на контур с током в однородном магнитном поле.
- •43.Сила,действующая на контур с током,в неоднородном магнитном поле.
- •44.Поведение витка с током во внешнем однородном магнитном поле. Устойчивое и неустойчивое положение равновесия витка.
26. Постоянный электрический ток. Сторонние силы и эдс источника тока.
Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.
Любые силы неэлектростатического происхождения, создающие в проводнике ток, называются сторонними силами. Это могут быть механические силы (натирание вручную стеклянной палочки), химические силы в электрических батарейках, электромагнитные силы в генераторах 6. Устройства, в которых возникают сторонние силы, называются источниками тока. Источники тока характеризуют величиной, называемой электродвижущей силой.
|
Электродвижущая сила (ЭДС) источника тока; это название устаревшее, по смыслу ЭДС – это не сила, а работа сторонних сил по переносу единичного положительного заряда |
27.Разность потенциалов и напряжение. Закон Ома для участка цепи с источником тока. Электрическое сопростивление. Закон Ома для замкнутой цепи.
|
Внутри проводников заряды переносятся электростатическими силами при наличии разности потенциалов между точками проводника. Разность потенциалов – это работа электро-сатических сил по переносу единичного положительного заряда. |
|
|
Если мы рассматриваем участок цепи, на котором проявляются и сторонние и электростатические силы, то используется понятие напряжение U – это работа по переносу единичного положительного заряда сторонними и электростатическими силами. |
Закон Ома (в интегральной форме).
|
2 1 |
закон Ома для однородного участка цепи (без источника тока); смысл закона в том, что сила тока прямо пропорциональна разности потенциалов, приложенной к концам проводника |
|
() |
|
закон Ома для неоднородного участка цепи (с источником тока) |
|
|
|
закон Ома для замкнутой цепи Во внешней цепи традиционно считается, что ток идет от «+» батареи к «» |
|
В формулах: R – суммарное сопротивление участка цепи, указанного символически прямоугольником; оно может состоять из нескольких проводников, соединенных и последовательно, и параллельно
соединенных параллельно или последовательно; r – общее внутреннее сопротивление источников тока |
Напряжением U называется произведение силы тока на сопротивление участка. Из формулы () следует, что напряжение и разность потенциалов численно равны только для однородного участка цепи ( = 0).
Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.