
- •1.Электрический заряд.Его дискретность.Закон сохранения электрического заряда. Закон кулона в векторном и скалярном виде.
- •5. Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.
- •11. Получите выражение для потенциала поля равномерно заряженной тонкой сферы. Считайте потенциал равным 0 в бесконечности. Нарисуйте график φ(r) внутри и вне сферы.
- •12. Получите выражение для потенциала бесконечно длинной равномерно заряженной нити. Считайте потенциал равным 0 на расстоянии r0 от нити. Нарисуйте график φ(r).
- •13. Получите выражение для потенциала бесконечно равномерно заряженной плоскости в зависимости от расстояния X от плоскости. Считайте потенциал плоскости равным φ0. Нарисуйте график φ(X).
- •15.Электроемкость уединенного проводника. Выражение для электроемкости сферы.
- •16.Электроемкость конденсатора. Выражение для электроемкости плоского конденсатора.
- •17. Получите выражение для электроемкости при параллельном соединении конденсаторов.
- •19. Диполь и его электрический момент. Напряженность и потенциал поля диполя на его продольной оси. Расстояние от диполя много больше длины диполя.
- •20. Поведение диполя во внешнем однородном электрическом поле. Момент сил, действующих на диполь со стороны поля.
- •21. Поляризованность диэлектрика(вектор поляризации). Его связь с напряженностью поля в диэлектрике. Электрическая восприимчивость.
- •22. Энергия заряженного конденсатора.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •24.Энергия электростатического поля. Получите выражение для объемной плоскости энергии на примере плоского конденсатора.
- •25. Сила тока. Плотность тока. Выражение для плотности тока через среднюю скорость носителей тока и их концентрацию.
- •26. Постоянный электрический ток. Сторонние силы и эдс источника тока.
- •28. Закон Ома в локальной (дифференциальной) форме. Удельное сопротивление и удельная проводимость.
- •29.Электронная(классическая) теория электропроводности металлов. Основные предположения теории и вывод закона Ома в локальной(дифференциальной) форме.
- •30. Закон Джоуля-Ленца. Формулы для вычисления мощности, выделяющейся на сопротивлении.
- •32. Электрическое сопротивление при параллельном и последовательном соединении проводников.
- •33.Сила Лоренца (в векторной и скалярной формах). Вектор магнитной индукции, его размерность.
- •34. Движение заряженных частиц в магнитном поле. Радиус кривизны и шаг винтовой траектории движения.
- •36. Получите на основе закона Био-Савара выражение для нахождения индукции магнитного поля на оси и в центре кругового витка с током. Магнитный момент витка с током.
- •38. Магнитное поле соленоида. Выражение для индукции магнитного поля внутри бесконечно длинного соленоида.
- •39.Действие магнитного поля на ток. Сила, действующая на элемент тока(закон ампера) в векторной и скалярной формах.
- •40.Действие магнитного поля на ток. Сила, действующая на прямолинейный проводник с током(закон Ампера).
- •41.Сила взаимодействия(на единицу длины) между двумя прямыми параллельными проводниками с токами для одинаково и противоположно направленных токов.
- •42.Вращающий момент, действующий на контур с током в однородном магнитном поле.
- •43.Сила,действующая на контур с током,в неоднородном магнитном поле.
- •44.Поведение витка с током во внешнем однородном магнитном поле. Устойчивое и неустойчивое положение равновесия витка.
22. Энергия заряженного конденсатора.
Рассмотрим две параллельные одинаковые незаряженные пластины, Мысленно перенесем с одной пластины на другую бесконечно малый заряд +dq. Для этого не требуется никакой работы, т.к. пластина пока не заряжена. После этого пластины окажутся разноименно заряженными, и между ними появится разность потенциалов . Для переноса следующей «порции» заряда уже требуется работа dА = dq = dq(q/C), где С – емкость конденсатора. Каждая новая «порция» заряда будет повышать заряд q на пластине, и все труднее будет переносить новые порции. Поэтому для вычисления полной работы следует проинтегрировать.
|
работа, которую надо затратить, чтобы зарядить конденсатор зарядом q. А=W |
|
энергия заряженного конденсатора |
23.Энергия электростатического поля. Объемная плотность энергии.
|
объемная плотность энергии - по смыслу – это энергия, приходящаяся на единицу объема пространства. |
Энергия электростатического поля - это энергия системы неподвижных точечных зарядов, энергия уединенного заряженного проводника и энергия заряженного конденсатора.
Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:
Энергия
электростатического поля системы
точечных зарядов равна:
24.Энергия электростатического поля. Получите выражение для объемной плоскости энергии на примере плоского конденсатора.
Энергия электростатического поля - это энергия системы неподвижных точечных зарядов, энергия уединенного заряженного проводника и энергия заряженного конденсатора.
Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:
Энергия электростатического поля системы точечных зарядов равна:
Получим формулы для энергии, выразив ее через характеристики электрического поля, существующего вокруг заряженных тел: напряженность Е и электрическую индукцию D. Рассмотрим плоский конденсатор, считая поле между обкладками однородным.
|
энергия заряженного конденсатора |
|
- разность потенциалов между обкладками, С -емкость плоского конденсатора, V – объем пространства между обкладками; подставим формулы в (), получим: |
|
электрическая энергия, сосредоточенная в пространстве между обкладками плоского конденсатора. |
25. Сила тока. Плотность тока. Выражение для плотности тока через среднюю скорость носителей тока и их концентрацию.
|
С |
|
Плотность тока (А/м2) – это вектор, направленный так же, как скорость движения положительных зарядов. Численно она равна силе тока, проходящего через единицу площади поперечного сечения или равна тому заряду, который проходит за единицу времени через единичное поперечное сечение проводника. |
|
Получим формулу для плотности тока. Пусть в единице объема проводника длиной L, по которому течет ток, находится n носителей тока (электронов) с зарядом е. Средняя скорость направленного движения носителей vср .
|
плотность тока (по определению) |
|
полный заряд, прошедший через сечение проводника за время t; N – число носителей тока в некотором объеме V проводника |
|
(1/м3) концентрация носителей тока, V – объем проводника |
|
средняя скорость направленного движения носителей (скорость дрейфа) |
|
Подставив вышеприведенные формулы в первую из них, получим выражение, связывающее плотность тока с величиной заряда носителей тока (заряд электрона), их средней скорости направленного движения и концентрации. |