
- •1.Электрический заряд.Его дискретность.Закон сохранения электрического заряда. Закон кулона в векторном и скалярном виде.
- •5. Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.
- •11. Получите выражение для потенциала поля равномерно заряженной тонкой сферы. Считайте потенциал равным 0 в бесконечности. Нарисуйте график φ(r) внутри и вне сферы.
- •12. Получите выражение для потенциала бесконечно длинной равномерно заряженной нити. Считайте потенциал равным 0 на расстоянии r0 от нити. Нарисуйте график φ(r).
- •13. Получите выражение для потенциала бесконечно равномерно заряженной плоскости в зависимости от расстояния X от плоскости. Считайте потенциал плоскости равным φ0. Нарисуйте график φ(X).
- •15.Электроемкость уединенного проводника. Выражение для электроемкости сферы.
- •16.Электроемкость конденсатора. Выражение для электроемкости плоского конденсатора.
- •17. Получите выражение для электроемкости при параллельном соединении конденсаторов.
- •19. Диполь и его электрический момент. Напряженность и потенциал поля диполя на его продольной оси. Расстояние от диполя много больше длины диполя.
- •20. Поведение диполя во внешнем однородном электрическом поле. Момент сил, действующих на диполь со стороны поля.
- •21. Поляризованность диэлектрика(вектор поляризации). Его связь с напряженностью поля в диэлектрике. Электрическая восприимчивость.
- •22. Энергия заряженного конденсатора.
- •23.Энергия электростатического поля. Объемная плотность энергии.
- •24.Энергия электростатического поля. Получите выражение для объемной плоскости энергии на примере плоского конденсатора.
- •25. Сила тока. Плотность тока. Выражение для плотности тока через среднюю скорость носителей тока и их концентрацию.
- •26. Постоянный электрический ток. Сторонние силы и эдс источника тока.
- •28. Закон Ома в локальной (дифференциальной) форме. Удельное сопротивление и удельная проводимость.
- •29.Электронная(классическая) теория электропроводности металлов. Основные предположения теории и вывод закона Ома в локальной(дифференциальной) форме.
- •30. Закон Джоуля-Ленца. Формулы для вычисления мощности, выделяющейся на сопротивлении.
- •32. Электрическое сопротивление при параллельном и последовательном соединении проводников.
- •33.Сила Лоренца (в векторной и скалярной формах). Вектор магнитной индукции, его размерность.
- •34. Движение заряженных частиц в магнитном поле. Радиус кривизны и шаг винтовой траектории движения.
- •36. Получите на основе закона Био-Савара выражение для нахождения индукции магнитного поля на оси и в центре кругового витка с током. Магнитный момент витка с током.
- •38. Магнитное поле соленоида. Выражение для индукции магнитного поля внутри бесконечно длинного соленоида.
- •39.Действие магнитного поля на ток. Сила, действующая на элемент тока(закон ампера) в векторной и скалярной формах.
- •40.Действие магнитного поля на ток. Сила, действующая на прямолинейный проводник с током(закон Ампера).
- •41.Сила взаимодействия(на единицу длины) между двумя прямыми параллельными проводниками с токами для одинаково и противоположно направленных токов.
- •42.Вращающий момент, действующий на контур с током в однородном магнитном поле.
- •43.Сила,действующая на контур с током,в неоднородном магнитном поле.
- •44.Поведение витка с током во внешнем однородном магнитном поле. Устойчивое и неустойчивое положение равновесия витка.
43.Сила,действующая на контур с током,в неоднородном магнитном поле.
В неоднородном магнитном поле кроме сил,присутствующих в однородном магнитном поле, которые поворачивают и растягивают контур, появляется составляющая сил, которая стремится переместить контур. Если контур оказался ориентированным своим магнитным моментом по полю (как на рисунке), то составляющая силы F1 будет растягивать контур, а составляющая F2 будет втягивать контур в область более сильного поля. Если контур окажется в поле таким образом, что его магнитный момент будет направлен против поля, это положение контура будет неустойчивым. Контур развернется по полю, и будет втягиваться в область более сильного поля.
Приведем выражение
для силы, действующей на контур с током
в неоднородном магнитном поле, индукция
которого изменяется только по одной
координате х.
|
Сила, действующая на контур (виток) с током в неоднородном магнитном поле В(х). |
44.Поведение витка с током во внешнем однородном магнитном поле. Устойчивое и неустойчивое положение равновесия витка.
Контур
с током, помещенный в магнитное поле,
обладает запасом энергии. Действительно,
чтобы повернуть контур с током на
некоторый угол
в направлении, обратном направлению
его поворота в магнитном поле, необходимо
совершить работу против сил, действующих
на этот контур со стороны поля. По
величине эта работа равна
.
Совершенная над контуром работа идет на увеличение его энергии. Поворачиваясь в первоначальное положение, контур возвратит затраченную на его поворот работу, совершив ее над какими-либо телами. Следовательно, запасенная контуром энергия есть:
.
(при
выводе этой формулы мы приняли, что при
энергия контура W,
определенная с точностью до произвольной
постоянной, равна нулю).
Полученную формулу можно написать также в виде:
Устойчивое равновесие |
Неустойчивое равновесие |
Рис.9.3. Положения равновесия контура с током в магнитном поле.
Из
приведенной формулы видно, что устойчивому
положению равновесия контура с током
в магнитном поле (рис.9.3) соответствует
ориентация, при которой векторы
и
параллельны (α
= 0); в этом случае
энергия контура минимальна
и равна
.
Неустойчивому
положению равновесия соответствует
ориентация, при которой векторы
и
антипараллельны (α
= π); в этом
случае энергия контура максимальна
и равна
.
1
2
3 Не обязательно брать цилиндр, можно взять любую призму, важно, чтобы ее образующие были перпендикулярны торцевым сечениям и самой заряженной плоскости.
4
5
6
7