
- •1. Предмет теории вероятностей. Понятие случайного события.
- •2. Основные типы событий, алгебра событий.
- •3.Понятие вероятности события. Классическое, статистическое и геометрическое определение вероятности. Свойства вероятностей.
- •Элементы комбинаторики. Схемы выбора без возвращения и с возвращением.
- •Урны и шарики
- •Урновая схема: выбор без возвращения, с учетом порядка
- •Урновая схема: выбор без возвращения и без учета порядка
- •Урновая схема: выбор с возвращением и с учетом порядка
- •Урновая схема: выбор с возвращением и без учета порядка
- •Теорема сложения вероятностей.
- •Сумма и произведение совместных событий и их геометрическая интерпретация.
- •Зависимые и независимые события. Теорема умножения вероятностей.
- •8.Формула полной вероятности.
- •9. Формула Бейеса.
- •10. Формула (схема) Бернулли.
- •11. Предельные теоремы в схеме Бернулли. Формула Пуассона и условия её применимости.
- •Предельные теоремы для схем Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •12. Локальная и интегральная теорема Муавра-Лапласа.
- •13. Дискретные случайные события и возможности их описания.
- •15. Функция распределения и её свойства. Вероятность попадания случайной величины на заданный интервал.
- •16. Плотность распределения и её свойства. Вероятностный и геометрический смысл плотности распределения.
- •17. Математическое ожидание случайной величины и его свойства.
- •18. Дисперсия и среднее квадратическое отклонение случайной величины. Свойства дисперсии. Производящая функция.
- •19. Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили распределения.
- •20. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •21. Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •Кривая распределения вероятностей.
- •22. Закон равномерного распределения.
- •23. Экспонентный закон распределения.
- •24. Нормальное распределение. Функция Лапласа. Вероятность попадания в заданный интервал.
- •25. Функция распределения двумерной случайной величины.
- •26. Плотность распределения вероятностей двумерной случайной величины и её свойства.
- •27. Зависимость и независимость двух случайных величин. Числовые характеристики двумерной с.В. Математическое ожидание и дисперсия.
- •28. Корреляционный момент. Коэффициент корреляции. Свойства ковариации и коэффициента корреляции.
- •Свойства ковариации Править
- •29. Предельные теоремы теории вероятностей. Неравенство и теория Чебышева
- •31. Центральная предельная теорема.
- •32. Математическая статистика. Основные понятия.
- •33. Генеральная совокупность и выборка. Характеристики выборки. Способы отбора.
- •34. Статистическое распределение выборки.
- •35. Эмпирическая функция распределения.
- •36. Полигон и гистограмма.
- •37. Статистические оценки параметров распределения.
- •39. Точечная и интервальная оценки. Доверительный интервал. Методики нахождения точечных оценок.
- •40. Метод статистических гипотез.
28. Корреляционный момент. Коэффициент корреляции. Свойства ковариации и коэффициента корреляции.
Коэффициентом ковариации называется выражение:
cov(X,Y)=M[(X-MX)(Y-MY)]=M[XY-XMY-YMX+MX•MY]=MXY-2MX•MY+MX•MY=MXY-MX•MY
Если случайные величины XY независимы, то их коэффициент ковариации равен нулю, обратное в общем случае неверно.
Коэффициентом корреляции случайных величин X и Y называется число:
X*=(X-MX)/σx Y*=(Y-MY)/σy
D(X±Y)=M[X±Y-M(X±Y)]2=M[X±Y-MX∓MY]2=M[(X-MX)±(Y-MY)]2=M[(M-MX)2±2(X-MX)(Y-MY)+(Y-MY)2]=M(X_MX)2±2M(X-MX)(Y-MY)+M(Y-MY)2=DX±cov(XY)+DY
Следствие:
Если X и Y независимы, то коэффициент ковариации равен 0 и следовательно
D(X±Y)=DX±DY
Свойства коэффициента корреляции
1. -1≤pxy≤1 2. Если |pxy|=1, то с вероятность 1 X и Y связаны линейно. То есть, если коэффициент корреляции |pxy|=1, то результаты опыта лежат на прямой
В общем случае Y можно представить в виде
y=ax+b+z DZ=σy2(1-pxy)2
Коэффициент корреляции является мерой близости линейной связи между случайными величинами X и Y: чем ближе коэффициент корреляции по модулю к 1, тем более тесно результаты конкретного испытания над X и Y соотносятся с прямой ax+b.
Свойства ковариации Править
Ковариация симметрична:
.
В силу линейности математического ожидания, ковариация может быть записана как
.
Пусть
случайные величины, а
их две произвольные линейные комбинации. Тогда
.
В частности ковариация (в отличие от коэффициента корреляции) не инварианта относительно смены масштаба, что не всегда удобно в приложениях.
Ковариация случайной величины с собой равна дисперсии:
.
Если
независимые случайные величины, то
.
Обратное, вообще говоря, неверно.
Неравенство Коши — Буняковского:
.
29. Предельные теоремы теории вероятностей. Неравенство и теория Чебышева
Неравенство Чебышева.
Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин.
Теорема 13.1(неравенство Чебышева). p( | X – M(X)| < ε ) ≥ D(X) / ε². (13.1)
Доказательство. Пусть Х задается рядом распределения
Х |
х1 |
х2 |
… |
хп |
р |
р1 |
р2 |
… |
рп |
Так как события |X – M(X)| < ε и |X – M(X)| ≥ ε противоположны, то р ( |X – M(X)| < ε ) + + р ( |X – M(X)| ≥ ε ) = 1, следовательно, р ( |X – M(X)| < ε ) = 1 - р ( |X – M(X)| ≥ ε ). Найдем р ( |X – M(X)| ≥ ε ).
D(X) = (x1 – M(X))²p1 + (x2 – M(X))²p2 + … + (xn – M(X))²pn . Исключим из этой суммы те слагаемые, для которых |X – M(X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые k слагаемых. Тогда
D(X) ≥ (xk+1 – M(X))²pk+1 + (xk+2 – M(X))²pk+2 + … + (xn – M(X))²pn ≥ ε² (pk+1 + pk+2 + … + pn).
Отметим, что pk+1 + pk+2 + … + pn есть вероятность того, что |X – M(X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D(X) ≥ ε² р(|X – M(X)| ≥ ε), или р (|X – M(X)| ≥ ε) ≤ D(X) / ε². Тогда вероятность противоположного события p( | X – M(X)| < ε ) ≥ D(X) / ε², что и требо-валось доказать.
Теоремы Чебышева и Бернулли.
Теорема 13.2 (теорема Чебышева). Если Х1, Х2,…, Хп – попарно независимые случайные величины, дисперсии которых равномерно ограничены ( D(Xi) ≤ C), то для сколь угодно малого числа ε вероятность неравенства
будет сколь угодно близка к 1, если число случайных величин достаточно велико.
Замечание. Иначе говоря, при выполнении этих условий
Доказательство.
Рассмотрим новую случайную величину
и найдем ее математическое ожидание.
Используя свойства математического
ожидания, получим, что
.
Применим к
неравенство Чебышева:
Так как рассматриваемые случайные
величины независимы, то, учитывая условие
теоремы, имеем:
Используя этот результат, представим
предыдущее неравенство в виде:
Перейдем к пределу при
:
Поскольку вероятность не может быть
больше 1, можно утверждать, что
Теорема доказана.
Следствие.
Если
Х1, Х2, …, Хп
– попарно независимые случайные величины
с равномерно ограничен-ными дисперсиями,
имеющие одинаковое математическое
ожидание, равное а, то для любого
сколь угодно малого ε > 0 вероятность
неравенства
будет как угодно близка к 1, если число
случайных величин достаточно велико.
Иначе говоря,
.
Вывод: среднее арифметическое достаточно большого числа случайных величин прини-мает значения, близкие к сумме их математических ожиданий, то есть утрачивает характер случайной величины. Например, если проводится серия измерений какой-либо физической величины, причем: а) результат каждого измерения не зависит от результатов остальных, то есть все результаты представляют собой попарно независимые случайные величины; б) измерения производятся без систематических ошибок (их математические ожидания равны между собой и равны истинному значению а измеряемой величины); в) обеспечена определенная точность измерений, следовательно, дисперсии рассматривае-мых случайных величин равномерно ограничены; то при достаточно большом числе измерений их среднее арифметическое окажется сколь угодно близким к истинному значению измеряемой величины.
Теоремы Маркова и Бернулли.