Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_TERVER.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.47 Mб
Скачать

24. Нормальное распределение. Функция Лапласа. Вероятность попадания в заданный интервал.

Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

            Обозначим 

            Тогда  

Т.к. интеграл   не выражается через элементарные функции, то вводится в рассмотрение функция

которая называется функцией Лапласа или интегралом вероятностей.

            Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

            Ниже показан график функции Лапласа.

            Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(-х) = - Ф(х);

3) Ф(¥) = 1.

            Функцию Лапласа также называют функцией ошибок и обозначают erf x.

 Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Ниже показан график нормированной функции Лапласа.

25. Функция распределения двумерной случайной величины.

Определение 8.1. Функцией распределения F(x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y:

F( х, у ) = p ( X < x, Y < y ). (8.1)

y

Рис.1.

Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у).

Замечание. Определение функции распределения справедливо как для непрерывной, так и для дискретной двумерной случайной величины.

Свойства функции распределения.

  1. 0 ≤ F(x, y) ≤ 1 (так как F(x, y) является вероятностью).

  2. F(x, y) есть неубывающая функция по каждому аргументу:

F(x2, y) ≥ F(x1, y), если x2 > x1;

F(x, y2) ≥ F(x, y1), если y2 > y1.

Доказательство. F(x2, y) = p(X < x2, Y < y) = p(X < x1, Y < y) + p(x1X < x2, Y < y) ≥

p(X < x1, Y < y) = F(x1, y). Аналогично доказывается и второе утверждение.

  1. Имеют место предельные соотношения:

а) F(-∞, y) = 0; b) F(x, - ∞) = 0; c) F(- ∞, -∞) = 0; d) F( ∞, ∞) = 1.

Доказательство. События а), b) и с) невозможны ( так как невозможно событие Х<- ∞ или Y <- ∞), а событие d) достоверно, откуда следует справедливость приведенных равенств.

  1. При у = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Х:

F(x, ∞) = F1(x).

При х = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Y :

F( ∞, y) = F2(y).

Доказательство. Так как событие Y < ∞ достоверно, то F(x, ∞) = р(Х < x) = F1(x). Аналогично доказывается второе утверждение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]