
- •1. Предмет теории вероятностей. Понятие случайного события.
- •2. Основные типы событий, алгебра событий.
- •3.Понятие вероятности события. Классическое, статистическое и геометрическое определение вероятности. Свойства вероятностей.
- •Элементы комбинаторики. Схемы выбора без возвращения и с возвращением.
- •Урны и шарики
- •Урновая схема: выбор без возвращения, с учетом порядка
- •Урновая схема: выбор без возвращения и без учета порядка
- •Урновая схема: выбор с возвращением и с учетом порядка
- •Урновая схема: выбор с возвращением и без учета порядка
- •Теорема сложения вероятностей.
- •Сумма и произведение совместных событий и их геометрическая интерпретация.
- •Зависимые и независимые события. Теорема умножения вероятностей.
- •8.Формула полной вероятности.
- •9. Формула Бейеса.
- •10. Формула (схема) Бернулли.
- •11. Предельные теоремы в схеме Бернулли. Формула Пуассона и условия её применимости.
- •Предельные теоремы для схем Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •12. Локальная и интегральная теорема Муавра-Лапласа.
- •13. Дискретные случайные события и возможности их описания.
- •15. Функция распределения и её свойства. Вероятность попадания случайной величины на заданный интервал.
- •16. Плотность распределения и её свойства. Вероятностный и геометрический смысл плотности распределения.
- •17. Математическое ожидание случайной величины и его свойства.
- •18. Дисперсия и среднее квадратическое отклонение случайной величины. Свойства дисперсии. Производящая функция.
- •19. Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили распределения.
- •20. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •21. Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •Кривая распределения вероятностей.
- •22. Закон равномерного распределения.
- •23. Экспонентный закон распределения.
- •24. Нормальное распределение. Функция Лапласа. Вероятность попадания в заданный интервал.
- •25. Функция распределения двумерной случайной величины.
- •26. Плотность распределения вероятностей двумерной случайной величины и её свойства.
- •27. Зависимость и независимость двух случайных величин. Числовые характеристики двумерной с.В. Математическое ожидание и дисперсия.
- •28. Корреляционный момент. Коэффициент корреляции. Свойства ковариации и коэффициента корреляции.
- •Свойства ковариации Править
- •29. Предельные теоремы теории вероятностей. Неравенство и теория Чебышева
- •31. Центральная предельная теорема.
- •32. Математическая статистика. Основные понятия.
- •33. Генеральная совокупность и выборка. Характеристики выборки. Способы отбора.
- •34. Статистическое распределение выборки.
- •35. Эмпирическая функция распределения.
- •36. Полигон и гистограмма.
- •37. Статистические оценки параметров распределения.
- •39. Точечная и интервальная оценки. Доверительный интервал. Методики нахождения точечных оценок.
- •40. Метод статистических гипотез.
24. Нормальное распределение. Функция Лапласа. Вероятность попадания в заданный интервал.
Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности
Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.
Обозначим
Тогда
Т.к.
интеграл
не
выражается через элементарные функции,
то вводится в рассмотрение функция
которая называется функцией Лапласа или интегралом вероятностей.
Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.
Ниже показан график функции Лапласа.
Функция Лапласа обладает следующими свойствами:
1) Ф(0) = 0;
2) Ф(-х) = - Ф(х);
3) Ф(¥) = 1.
Функцию Лапласа также называют функцией ошибок и обозначают erf x.
Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:
Ниже показан график нормированной функции Лапласа.
25. Функция распределения двумерной случайной величины.
Определение 8.1. Функцией распределения F(x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y:
F( х, у ) = p ( X < x, Y < y ). (8.1)
y
Рис.1.
Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у).
Замечание. Определение функции распределения справедливо как для непрерывной, так и для дискретной двумерной случайной величины.
Свойства функции распределения.
0 ≤ F(x, y) ≤ 1 (так как F(x, y) является вероятностью).
F(x, y) есть неубывающая функция по каждому аргументу:
F(x2, y) ≥ F(x1, y), если x2 > x1;
F(x, y2) ≥ F(x, y1), если y2 > y1.
Доказательство. F(x2, y) = p(X < x2, Y < y) = p(X < x1, Y < y) + p(x1 ≤ X < x2, Y < y) ≥
≥ p(X < x1, Y < y) = F(x1, y). Аналогично доказывается и второе утверждение.
Имеют место предельные соотношения:
а) F(-∞, y) = 0; b) F(x, - ∞) = 0; c) F(- ∞, -∞) = 0; d) F( ∞, ∞) = 1.
Доказательство. События а), b) и с) невозможны ( так как невозможно событие Х<- ∞ или Y <- ∞), а событие d) достоверно, откуда следует справедливость приведенных равенств.
При у = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Х:
F(x, ∞) = F1(x).
При х = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Y :
F( ∞, y) = F2(y).
Доказательство. Так как событие Y < ∞ достоверно, то F(x, ∞) = р(Х < x) = F1(x). Аналогично доказывается второе утверждение.