
- •1. Предмет теории вероятностей. Понятие случайного события.
- •2. Основные типы событий, алгебра событий.
- •3.Понятие вероятности события. Классическое, статистическое и геометрическое определение вероятности. Свойства вероятностей.
- •Элементы комбинаторики. Схемы выбора без возвращения и с возвращением.
- •Урны и шарики
- •Урновая схема: выбор без возвращения, с учетом порядка
- •Урновая схема: выбор без возвращения и без учета порядка
- •Урновая схема: выбор с возвращением и с учетом порядка
- •Урновая схема: выбор с возвращением и без учета порядка
- •Теорема сложения вероятностей.
- •Сумма и произведение совместных событий и их геометрическая интерпретация.
- •Зависимые и независимые события. Теорема умножения вероятностей.
- •8.Формула полной вероятности.
- •9. Формула Бейеса.
- •10. Формула (схема) Бернулли.
- •11. Предельные теоремы в схеме Бернулли. Формула Пуассона и условия её применимости.
- •Предельные теоремы для схем Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •12. Локальная и интегральная теорема Муавра-Лапласа.
- •13. Дискретные случайные события и возможности их описания.
- •15. Функция распределения и её свойства. Вероятность попадания случайной величины на заданный интервал.
- •16. Плотность распределения и её свойства. Вероятностный и геометрический смысл плотности распределения.
- •17. Математическое ожидание случайной величины и его свойства.
- •18. Дисперсия и среднее квадратическое отклонение случайной величины. Свойства дисперсии. Производящая функция.
- •19. Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили распределения.
- •20. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •21. Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •Кривая распределения вероятностей.
- •22. Закон равномерного распределения.
- •23. Экспонентный закон распределения.
- •24. Нормальное распределение. Функция Лапласа. Вероятность попадания в заданный интервал.
- •25. Функция распределения двумерной случайной величины.
- •26. Плотность распределения вероятностей двумерной случайной величины и её свойства.
- •27. Зависимость и независимость двух случайных величин. Числовые характеристики двумерной с.В. Математическое ожидание и дисперсия.
- •28. Корреляционный момент. Коэффициент корреляции. Свойства ковариации и коэффициента корреляции.
- •Свойства ковариации Править
- •29. Предельные теоремы теории вероятностей. Неравенство и теория Чебышева
- •31. Центральная предельная теорема.
- •32. Математическая статистика. Основные понятия.
- •33. Генеральная совокупность и выборка. Характеристики выборки. Способы отбора.
- •34. Статистическое распределение выборки.
- •35. Эмпирическая функция распределения.
- •36. Полигон и гистограмма.
- •37. Статистические оценки параметров распределения.
- •39. Точечная и интервальная оценки. Доверительный интервал. Методики нахождения точечных оценок.
- •40. Метод статистических гипотез.
18. Дисперсия и среднее квадратическое отклонение случайной величины. Свойства дисперсии. Производящая функция.
В теории вероятностей Дисперсия случайной величины Х называется математическое ожидание Е (Х — mх)2 квадрата отклонения Х от её математического ожидания mх = Е (Х). Д. случайной величины Х обозначается через D (X) или через s2X.
Для случайной величины Х с непрерывным распределением вероятностей, характеризуемым плотностью вероятности р (х), дисперсия вычисляется по формуле
где
Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:
Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.
Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.
Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:
D(X) = M(X ²) – M ²(X). (7.7)
Доказательство.
Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:
D(X) = M(X – M(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(X)·M(X) + M²(X) =
= M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X), что и требовалось доказать.
Свойства дисперсии.
Дисперсия постоянной величины С равна нулю:
D (C) = 0. (7.8)
Доказательство. D(C) = M((C – M(C))²) = M((C – C)²) = M(0) = 0.
Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:
D(CX) = C²D(X). (7.9)
Доказательство. D(CX) = M((CX – M(CX))²) = M((CX – CM(X))²) = M(C²(X – M(X))²) =
= C²D(X).
Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:
D(X + Y) = D(X) + D(Y). (7.10)
Доказательство. D(X + Y) = M(X² + 2XY + Y²) – (M(X) + M(Y))² = M(X²) + 2M(X)M(Y) +
+ M(Y²) – M²(X) – 2M(X)M(Y) – M²(Y) = (M(X²) – M²(X)) + (M(Y²) – M²(Y)) = D(X) + D(Y).
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.
Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.
Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:
D(X – Y) = D(X) + D(Y). (7.11)
Доказательство. D(X – Y) = D(X) + D(-Y) = D(X) + (-1)²D(Y) = D(X) + D(X).
Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.
Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:
.
(7.12)
Опр:Средним
квадратическим отклонением
(х)
С.В.Х. называется число
Замечание:матем.ожидание М(х) характеризует среднее значение С.В.
Дисперсия D(x)характеризует квадратичное отклонение С.В. от среднего значения:
Св-ва
D(x): 1)D(c)=0:
2)D(k*x)=
*D(x)
Док-во:D(k*x)=M
=
M
=
3)дисперсия D(x+-y)=D(x)+D(Y)
4)D(x)=M(x2)-(M(x))2
Док-во:D(x)=M(x-M(x))2)=M(x2-2x*M(x)+M2(x))=M(x2)-2M(x)*M(M(x))+M(M2(x))=M(x2)-2M(x)*M(x)+M2(x)=M(x2)-M2(x)
M(x) M2(X)-постоянные величины
Производящей функцией случайной величины называется функция комплексного переменного z
,
|z|1.
производящая
функция последовательности f0, f1..., fn...
функция
(в
предположении, что этот степенной ряд
сходится хотя бы для одного значения t ¹
0). Производящая
функция называют
также генератрисой.
Последовательность f0, f1..., fn...
может быть как числовая, так и
функциональная; в последнем
случае Производящая
функция зависит
не только от t,
но и от аргументов функций fn. Например,
если fn= aqn где а и q -
постоянные, то Производящая
функция
если fn - Фибоначчи
числа;
f0 = 0,
f1 =
1, fn+2 = fn+1 + fn, то Производящая
функция
если fn = Т n (х) - Чебышева
многочлены: T0 (х) =
1, Tn (х) =
cos (n arc
cos x),
то Производящая
функция
и т.д.
Знание Производящая
функция последовательности
часто облегчает изучение свойств
последней. Производящая
функция применяются
в теории вероятностей, в теории функций
и в алгебре (в теории инвариантов).
Впервые метод Производящая
функция был
применен П. Лапласом для
решения некоторых проблем теории
вероятностей.