
- •Способы задания множеств. Отношения между множествами. Операции над множествами.
- •Символы математической логики.
- •Необходимое и достаточное условия. Доказательство методом «от противного». Правило построения отрицания.
- •Типы отображений. Обратимость отображения.
- •Числовые множества. Окрестности и их свойства.
- •Дать определения: а)числовой последовательности; б) ограниченной числовой последовательности; в) предела числовой последовательности. Дать геометрическую интерпретацию этих определений.
- •Сформулировать и доказать свойства сходящейся последовательности (единственность предела, ограниченность)
- •Сформулировать и доказать свойства последовательностей, связанные с неравенствами
- •10. Сформулировать и доказать теорему о пределе «зажатой» последовательности
- •Бесконечно большие и бесконечно малые последовательности.
- •Признак сходимости монотонной последовательности
- •18. Подпоследовательности. Теорема Больцано-Вейерштрасса.
- •22. Конечный предел функции при . Геометрическая иллюстрация. Горизонтальные асимптоты.
- •24. Свойства функций, имеющих конечный предел (единственность, ограниченность, сохранение знака функцией)
- •30. Бесконечно малые и бесконечно большие функции, теорема об их связи. Теорема о связи функции со своим пределом. Некоторые свойства бесконечно малых и бесконечно больших функций.
- •31. Первый замечательный предел
- •33. Эквивалентные функции. Определение. Свойства. Критерий эквивалентности функций. Главная часть функции
- •34. Применение эквивалентных функций к вычислению пределов. Теоремы 3 и 4
- •35. Асимптоты графика функции.
- •38. Два определения функции, непрерывной в точке. Доказательство их эквивалентности.
- •39. Точки разрыва функции и их классификация
- •44.Теорема об ограниченности непрерывной на отрезке функции
- •46. Теорема о непрерывности обратной функции
- •47. Определение и геометрическая интерпретация равномерной непрерывности. Теорема Кантора.
- •48. Определение производной функции в точке. Односторонние производные. Примеры функций, не имеющих производных в точке.
- •49. Механический и геометрический смысл производной. Уравнение касательной и нормали к кривой.
- •50. Определение функции, дифференцируемой в точке. Теоремы о связи дифференцируемости и производной, дифференцируемости и непрерывности.
- •51. Вывод формул производных суммы, произведения и частного функций
- •52. Теорема о производной сложной функции.
- •53. Теорема о производной обратной функции.
- •54. Дифференцированные функции, заданных параметрически и неявно.
- •55. Определение дифференциала, его геометрический смысл. Теория об эквивалентности дифференциала и приращения функции и ее применение к приближенным вычислениям.
- •56. Определение производных и дифференциалов высших порядков. Примеры. Производные высших порядков от функций, заданных параметрически, от неявных функций.
- •58. Теорема Ферма
- •59. Теорема Ролля и её геометрический смысл
- •60. Теорема Лагранжа о конечных приращениях и геометрический смысл.
- •61. Теорема Коши.
- •62. Правило Лопиталя раскрытия неопределенностей 0/0 и ∞/∞
- •63. Формула Тейлора с остатком в форме Пеано
- •64. Единственность формулы Тейлора
- •65. Формула Тейлора с остатком в форме Лагранжа
- •66. Теорема о необходимых и достаточных условиях возрастания и убывания дифференцируемой функции.
- •67. Необходимое условие существования экстремума.
- •68. Первое достаточное условие существования экстремума.
- •69. Второе достаточное условие существования экстремума.
- •70. Наибольшее и наименьшее значения функции на данном отрезке.
- •71. Определение выпуклой и вогнутой функции. Достаточный признак выпуклости и вогнутости.
- •72. Определение точки перегиба. Необходимое условие существования точки перегиба.
- •73. 1 И 2 достаточные признаки точки перегиба.
72. Определение точки перегиба. Необходимое условие существования точки перегиба.
Точка
Гf
(принадлежит
графику функции
называется точкой перегиба, если она
отделана промежутком выпуклости от
промежутка вогнутости.
Теорема 6. Пусть является точкой перегиба функции и функции имеет в некоторой окрестности точки вторую производную. Тогда 2-я производная в этой точке = 0.
Доказательство:
Предположим противное (в точке
).
Но тогда согласно теории 5 (о достаточном
признаке выпуклости и вогнутости)
функция
будет выпуклой или вогнутой. Что
противоречит тому, что точка
– точка перегиба.
73. 1 И 2 достаточные признаки точки перегиба.
1-е.
Если
при
переходе через точку
меняет
знак, то
–
точка перегиба.
Доказательство следует из определения точки перегиба.
2-е.
Пусть
имеет
в точке
производную
3-го порядка, отличную от 0. Тогда, если
2-я производная равна 0, а 3-я отличная от
0, то
является
точкой перегиба.
Доказательство: Разложим функцию по формуле Тейлора в окрестности точка до члена 3-го порядка.
Получим
,
где
при
,
.
в
некоторой окрестности точка
будет иметь постоянный знак, который
имеет значение 3-й производной, а множитель
при переходе через точку
будет
менять свой знак, а значит и y
– Y
будет менять свой знак, и значит
– точка перегиба.•