
- •Способы задания множеств. Отношения между множествами. Операции над множествами.
- •Символы математической логики.
- •Необходимое и достаточное условия. Доказательство методом «от противного». Правило построения отрицания.
- •Типы отображений. Обратимость отображения.
- •Числовые множества. Окрестности и их свойства.
- •Дать определения: а)числовой последовательности; б) ограниченной числовой последовательности; в) предела числовой последовательности. Дать геометрическую интерпретацию этих определений.
- •Сформулировать и доказать свойства сходящейся последовательности (единственность предела, ограниченность)
- •Сформулировать и доказать свойства последовательностей, связанные с неравенствами
- •10. Сформулировать и доказать теорему о пределе «зажатой» последовательности
- •Бесконечно большие и бесконечно малые последовательности.
- •Признак сходимости монотонной последовательности
- •18. Подпоследовательности. Теорема Больцано-Вейерштрасса.
- •22. Конечный предел функции при . Геометрическая иллюстрация. Горизонтальные асимптоты.
- •24. Свойства функций, имеющих конечный предел (единственность, ограниченность, сохранение знака функцией)
- •30. Бесконечно малые и бесконечно большие функции, теорема об их связи. Теорема о связи функции со своим пределом. Некоторые свойства бесконечно малых и бесконечно больших функций.
- •31. Первый замечательный предел
- •33. Эквивалентные функции. Определение. Свойства. Критерий эквивалентности функций. Главная часть функции
- •34. Применение эквивалентных функций к вычислению пределов. Теоремы 3 и 4
- •35. Асимптоты графика функции.
- •38. Два определения функции, непрерывной в точке. Доказательство их эквивалентности.
- •39. Точки разрыва функции и их классификация
- •44.Теорема об ограниченности непрерывной на отрезке функции
- •46. Теорема о непрерывности обратной функции
- •47. Определение и геометрическая интерпретация равномерной непрерывности. Теорема Кантора.
- •48. Определение производной функции в точке. Односторонние производные. Примеры функций, не имеющих производных в точке.
- •49. Механический и геометрический смысл производной. Уравнение касательной и нормали к кривой.
- •50. Определение функции, дифференцируемой в точке. Теоремы о связи дифференцируемости и производной, дифференцируемости и непрерывности.
- •51. Вывод формул производных суммы, произведения и частного функций
- •52. Теорема о производной сложной функции.
- •53. Теорема о производной обратной функции.
- •54. Дифференцированные функции, заданных параметрически и неявно.
- •55. Определение дифференциала, его геометрический смысл. Теория об эквивалентности дифференциала и приращения функции и ее применение к приближенным вычислениям.
- •56. Определение производных и дифференциалов высших порядков. Примеры. Производные высших порядков от функций, заданных параметрически, от неявных функций.
- •58. Теорема Ферма
- •59. Теорема Ролля и её геометрический смысл
- •60. Теорема Лагранжа о конечных приращениях и геометрический смысл.
- •61. Теорема Коши.
- •62. Правило Лопиталя раскрытия неопределенностей 0/0 и ∞/∞
- •63. Формула Тейлора с остатком в форме Пеано
- •64. Единственность формулы Тейлора
- •65. Формула Тейлора с остатком в форме Лагранжа
- •66. Теорема о необходимых и достаточных условиях возрастания и убывания дифференцируемой функции.
- •67. Необходимое условие существования экстремума.
- •68. Первое достаточное условие существования экстремума.
- •69. Второе достаточное условие существования экстремума.
- •70. Наибольшее и наименьшее значения функции на данном отрезке.
- •71. Определение выпуклой и вогнутой функции. Достаточный признак выпуклости и вогнутости.
- •72. Определение точки перегиба. Необходимое условие существования точки перегиба.
- •73. 1 И 2 достаточные признаки точки перегиба.
55. Определение дифференциала, его геометрический смысл. Теория об эквивалентности дифференциала и приращения функции и ее применение к приближенным вычислениям.
Определение.
Величина
,
являющаяся главной частью (при
)
приращения функции, линейной относительно
приращения аргумента, называется
дифференциалом функции
в точке
и
обозначается символом
или
.
Если в каждой точке некоторого промежутка
существует дифференциал, то
.
Заметим, что дифференциал зависит,
во-первых,
от точки Х, а, во-вторых,
от приращения
.
Для функции
для независимых переменных
Тогда
.
Если
отобрать бесконечно малое слагаемое
,
то получаем приближенную формулу
.
Последнее приближенное равенство дает
формулу, позволяющую приближенно
вычислить значение функции с помощью
дифференциалов. Действительно,
откуда
.
Точность последней формулы тем выше,
чем меньше
.
Геометрический
смысл.
Рассмотрим дифференцированную в точке
функцию
,
откуда следует, что дифференциал функции
при достаточно малых приращениях
есть приращение ординаты касательной
к графику функции
График
56. Определение производных и дифференциалов высших порядков. Примеры. Производные высших порядков от функций, заданных параметрически, от неявных функций.
Пусть y=f(x) такова, что её производная в свою очередь является функцией, которая имеет производную. Тогда существует производная от этой производной (f’(x))’, которая называется 2-1 производной.
57. Дифференциал сложной функции первого и высших порядков. Инвариантность формы первого дифференциала.
Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.
Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать
у'х=у'u*u'x.
Умножив обе части этого равенства на dx, поучаем у'хdx=у'u*u'хdx. Но у'хdx=dy и u'хdx=du. Следовательно, последнее равенство можно переписать так:
dy=у'udu.
Сравнивая формулы dy=у'х*dx и dy=у'u•du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.
Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.
Формула dy=у'х*dx по внешнему виду совпадает с формулой dy=у'u*du, но между ними есть принципиальное отличие: в первой формуле х — независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.
С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.
58. Теорема Ферма
Пусть функция y = f(x) определена в интервале (а, в) и принимает в точке с этого интервала наибольшее или наименьшее на (а, в) значение. Если существует f'(с), то f'(с) = 0.
Доказательство. Пусть, например, f(с) = М – наибольшее значение функции в интервале (а, в) и существует f'(с). По определению производной f'(с)=
.
При любом знаке х
f(c+x)-f(c)≤0,
так как f(с)
– наибольшее значение функции в (а,
в).
Если
х>0,
то
и, следовательно, f'(с)≤0.
Если же х<0,
то
и f'(с)
≥0.
Следовательно, f'(с)=0.
Геометрически теорема означает, что касательная, проведенная к графику функции в точке (с; f(с)), параллельна оси Ох.