
- •Курс «Проектирование Автоматизированных систем диспетчерского управления»
- •33. Анализ характеристик scada-систем для их сравнения и выбора. 82
- •1. Асу тп и диспетчерское управление. История (этапы) развития асу тп
- •Асу тп и диспетчерское управление
- •2. Задачи асду. Аппаратное и программное обеспечение реализации асду.
- •Аппаратное и программное обеспечение реализации асду
- •3. Структура асу тп. Трехуровневая структура асу тп. Компоненты систем контроля и управления и их назначение.
- •29. Обобщенная схема системы контроля и управления (основные компоненты системы управления).
- •4. Развернутая структура современной асутп. Подробное описание и состав технических и программных средств каждого уровня асу тп.
- •Задачи нижнего уровня
- •5. Технические средства автоматизации (датчики, модули усо, контроллеры, исполнительные механизмы) и их назначение.
- •Промышленные контроллеры (плк)
- •Исполнительные механизмы
- •6. Определение scada-систем. Концепция scada. Структура. Понятия rtu, mtu, ms, cs.
- •7. Анализ характеристик scada-систем для их сравнения и выбора.
- •8. Технические, стоимостные и эксплуатационные характеристики scada. Технические характеристики
- •Стоимостные характеристики
- •Эксплуатационные характеристики
- •9. Рабочее место диспетчера (оператора). Графический интерфейс пользователя. Мнемосхема. Требования к мнемосхемам.
- •Мнемосхема
- •Требования к мнемосхемам
- •10. Основные возможности scаda-систем. Функциональные возможности scada-систем.
- •Графические возможности
- •11. Понятие открытой системы. Применение открытых систем в промышленной автоматизации.
- •Надежность открытых систем
- •12. Принципы и технологии создания открытых программных систем.
- •Dde (Dynamic Data Exchange – динамический обмен данными)
- •Разработка приложений из компонентов
- •Распределенные компоненты
- •Интерфейс com
- •Dcom – модель распределённых компонентных объектов)
- •14. Технология ActiveX. Способы реализации ActiveX - компонентов. Технология ActiveX
- •Преимущества использования ActiveX
- •15. Scada-система InTouch. Графические средства InTouch. Компоненты среды разработки InTouch.
- •16. Графические объекты scada-системы InTouch и их свойства. Этапы создания проекта.
- •Окна в InTouch
- •17. Классификация графических объектов InTouch. Простые объекты и их свойства.
- •18. Классификация графических объектов InTouch. Сложные объекты и их свойства. Библиотека мастер-объектов (Wizards). Сложные объекты
- •19. Определение имени доступа в словаре переменных InTouch. Описание и процедура создания базы данных. Типы внутренних переменных.
- •Описание и процедура создания базы данных
- •20. Ведение архивов данных в scada-системах. Алармы.
- •Типы алармов
- •Приоритеты алармов
- •Группы алармов
- •Определение условий аларма для переменной
- •Вывод информации об алармах
- •21. Тренды в scada – системах. Тренды в InTouch. Разновидности.
- •Тренды в InTouch
- •Отображение трендов
- •Изменение параметров архивных трендов в режиме исполнения
- •Система распределенных архивов
- •22. Встроенные языки программирования. Скрипты в InTouch. Типы скриптов. Встроенные языки программирования
- •Скрипты в InTouch
- •23. Особенности адресации в InTouch. Обмен данными с другими приложениями.
- •24. Технические средства нижнего уровня асу тп.
- •Задачи нижнего уровня
- •25. Технические средства среднего уровня асу тп.
- •26. Технические средства верхнего уровня асу тп.
- •27. Технология ole for Process Control (opc). Организация взаимодействия с контроллерами. Определение орс
- •28. Структура и способы организации информации. Схема информационных потоков асу тп.
- •30. Функциональная структура scada-систем, особенности scada как процесса управления, области применения.
- •31. Основные возможности современных scada-систем и основные требования к ним.
- •32. Тенденции развития аппаратных и программных средств scada.
- •33. Анализ характеристик scada-систем для их сравнения и выбора.
- •34. Scada-система InTouch: основные характеристики, архитектура, особенности среды разработки.
- •35. Scada-система InTouch: графический интерфейс пользователя, аварийные сигналы, средства информационного взаимодействия. Графический интерфейс
- •Средства информационного взаимодействия
- •Аварийные сигналы
4. Развернутая структура современной асутп. Подробное описание и состав технических и программных средств каждого уровня асу тп.
АСУ ТП - автоматизированная система управления технологическими процессами, имеющая 2 или 3 уровня и выполняющая следующие функции:
сбор информации;
поддержание технологических параметров на заданных значениях;
контроль за технологическими параметрами, для которых не выполняются функции регулирования;
сигнализация;
блокировка управлений, являющихся результатом ошибочных действий технологического персонала;
противоаварийная защита (ПАЗ) при возникновении аварийных ситуаций.
Первый (нижний) уровень АСУТП является уровнем датчиков, исполнительных механизмов и контроллеров, которые устанавливаются непосредственно на технологических объектах.
Их деятельность заключается в получении параметров процесса, преобразовании их в соответствующий вид для дальнейшей передачи на более высокую ступень (функции датчиков), а также в приеме управляющих сигналов и в выполнении соответствующих действий (функции исполнительных механизмов).
Задачи нижнего уровня
сбор информации об измеряемых технологических параметрах процесса;
выработка управляющих воздействий на технологический процесс с целью поддержания технологических параметров на заданных значениях или изменения их по определенным законам;
сигнализация о выходе их за заданные пределы;
блокировка ошибочных действий персонала и управляющих устройств;
противоаварийная защита (ПАЗ) процесса по факту аварийных событий.
Средний уровень уровень производственного участка (цеха).
Его функции:
сбор информации, поступающей с нижнего уровня, ее обработка и хранение;
выработка управляющих сигналов на основе анализа информации;
передача информации о производственном участке на более высокий уровень;
архивирование информации;
генерация отчетов;
диагностика и защита от сбоев в элементах подсистем нижнего уровня;
определение настроек управляющих устройств (УУ) и уставок локальных регуляторов подсистем I уровня;
изменение структуры локальных подсистем (переконфигурирование, включение/выключение, переход в ручное управление и т.д.).
Верхний уровень (АСУП)
операторская часть
Визуализация процессов
Диалог оператора с системой
Возможность вмешательства оператора в технологические процессы при необходимости
система подготовки отчетов
Сохранение и выдача данных о ходе процессов с указанием времени, данных об энергетическом и материальном балансе и т.п.
система анализа тенденций
Возможность наблюдения за параметрами и прогнозирования
Этот уровень реализуется на основе системы SCADA
Развернутая структура современной АСУТП
5. Технические средства автоматизации (датчики, модули усо, контроллеры, исполнительные механизмы) и их назначение.
Технические средства автоматизации - приборы, устройства и технические системы, предназначенные для автоматизации производства. Т. с. а. обеспечивают автоматическое получение, передачу, преобразование, сравнение и использование информации в целях контроля и управления производственными процессами:
Датчики;
Устройства сопряжения с объектами (УСО);
Промышленные контроллеры;
Исполнительные механизмы.
Уровни АСУТП
УСО – устройство сопряжения с объектом
ДАТЧИКИ
Датчики, устанавливаемые на объекте, предназначены для первичного преобразования (измерения) параметров в выходной сигнал для передачи в УСО.
Существует много датчиков, которые могут преобразовывать измеряемые величины только в аналоговый вид, а также много исполнительных механизмов, имеющих только аналоговые входные сигналы. С другой стороны, новейшие средства автоматизации, которые находят все большее применение в системах управления, используют цифровое представление обрабатываемых величин.
Для того, чтобы связать между собой параметры, представленные в аналоговом/дискретном и цифровом виде, используются устройства сопряжения с объектами (УСО).
На нефтеперерабатывающих и химических производствах наиболее часто измеряемыми величинами являются температура, давление, расход и уровень. На них приходится около 80 % всех измерений.
Остальную часть занимают электрические, оптические и др. измерения.
При измерениях используются различные измерительные приборы, которые классифицируются по ряду признаков. Общей градацией является разделение их на приборы для измерения: механических, электрических, магнитных, тепловых и других физических величин.
Классификация по роду измеряемой величины указывает, какую физическую величину измеряет прибор (давление Р, температуру Т, расход F, уровень L, количество вещества Q и т.д.).
Исходя из признака преобразования измеряемой величины, измерительные приборы разделяют на приборы:
а) непосредственной оценки;
б) сравнения.
МОДУЛИ УСО
В дальнейшем в качестве УСО могут быть модули, платы и другие устройства, предназначенные для приема аналоговых и дискретных сигналов от объекта (независимо от того, сколько раз они были преобразованы внутри него), преобразования его в цифровой вид для передачи в компьютер (контроллер), а также для приема цифровых управляющих данных от РС и преобразования их в вид, соответствующий исполнительным механизмам объекта.
Модули УСО - это конструктивно законченные устройства, выполненные в виде модулей, устанавливаемых, как правило, в специализированные платы, имеющие клеммные соединители для подвода внешних цепей (такие платы называют монтажными панелями), либо на стандартный несущий DIN-рельс. Модули УСО заключены в пластмассовый корпус и оснащены соответственно либо выводами для крепления на монтажных панелях, либо клеммными соединителями с винтовой фиксацией для крепления входных и выходных цепей.
На УСО возлагают следующие функции:
Нормализация аналогового сигнала - приведение границ шкалы первичного непрерывного сигнала к одному из стандартных диапазонов входного сигнала аналого-цифрового преобразователя измерительного канала. Наиболее распространены диапазоны напряжений от 0 до 5 В, от -5 до 5 В, от 0 до 10 В и токовые: от 0 до 5 мА, от 0 до 20 мА, от 4 до 20 мА, от 1 до 5 мА.
Предварительная низкочастотная фильтрация аналогового сигнала - ограничение полосы частот первичного непрерывного сигнала с целью снижения влияния на результат измерения помех различного происхождения. На промышленных объектах наиболее распространены помехи с частотой сети переменного тока, а также хаотические импульсные помехи, вызванные влиянием на технические средства измерительного канала переходных процессов и наводок при коммутации исполнительных механизмов повышенной мощности.
Обеспечение гальванической изоляции между источниками сигнала и каналами системы.