
- •Курс «Проектирование Автоматизированных систем диспетчерского управления»
- •33. Анализ характеристик scada-систем для их сравнения и выбора. 82
- •1. Асу тп и диспетчерское управление. История (этапы) развития асу тп
- •Асу тп и диспетчерское управление
- •2. Задачи асду. Аппаратное и программное обеспечение реализации асду.
- •Аппаратное и программное обеспечение реализации асду
- •3. Структура асу тп. Трехуровневая структура асу тп. Компоненты систем контроля и управления и их назначение.
- •29. Обобщенная схема системы контроля и управления (основные компоненты системы управления).
- •4. Развернутая структура современной асутп. Подробное описание и состав технических и программных средств каждого уровня асу тп.
- •Задачи нижнего уровня
- •5. Технические средства автоматизации (датчики, модули усо, контроллеры, исполнительные механизмы) и их назначение.
- •Промышленные контроллеры (плк)
- •Исполнительные механизмы
- •6. Определение scada-систем. Концепция scada. Структура. Понятия rtu, mtu, ms, cs.
- •7. Анализ характеристик scada-систем для их сравнения и выбора.
- •8. Технические, стоимостные и эксплуатационные характеристики scada. Технические характеристики
- •Стоимостные характеристики
- •Эксплуатационные характеристики
- •9. Рабочее место диспетчера (оператора). Графический интерфейс пользователя. Мнемосхема. Требования к мнемосхемам.
- •Мнемосхема
- •Требования к мнемосхемам
- •10. Основные возможности scаda-систем. Функциональные возможности scada-систем.
- •Графические возможности
- •11. Понятие открытой системы. Применение открытых систем в промышленной автоматизации.
- •Надежность открытых систем
- •12. Принципы и технологии создания открытых программных систем.
- •Dde (Dynamic Data Exchange – динамический обмен данными)
- •Разработка приложений из компонентов
- •Распределенные компоненты
- •Интерфейс com
- •Dcom – модель распределённых компонентных объектов)
- •14. Технология ActiveX. Способы реализации ActiveX - компонентов. Технология ActiveX
- •Преимущества использования ActiveX
- •15. Scada-система InTouch. Графические средства InTouch. Компоненты среды разработки InTouch.
- •16. Графические объекты scada-системы InTouch и их свойства. Этапы создания проекта.
- •Окна в InTouch
- •17. Классификация графических объектов InTouch. Простые объекты и их свойства.
- •18. Классификация графических объектов InTouch. Сложные объекты и их свойства. Библиотека мастер-объектов (Wizards). Сложные объекты
- •19. Определение имени доступа в словаре переменных InTouch. Описание и процедура создания базы данных. Типы внутренних переменных.
- •Описание и процедура создания базы данных
- •20. Ведение архивов данных в scada-системах. Алармы.
- •Типы алармов
- •Приоритеты алармов
- •Группы алармов
- •Определение условий аларма для переменной
- •Вывод информации об алармах
- •21. Тренды в scada – системах. Тренды в InTouch. Разновидности.
- •Тренды в InTouch
- •Отображение трендов
- •Изменение параметров архивных трендов в режиме исполнения
- •Система распределенных архивов
- •22. Встроенные языки программирования. Скрипты в InTouch. Типы скриптов. Встроенные языки программирования
- •Скрипты в InTouch
- •23. Особенности адресации в InTouch. Обмен данными с другими приложениями.
- •24. Технические средства нижнего уровня асу тп.
- •Задачи нижнего уровня
- •25. Технические средства среднего уровня асу тп.
- •26. Технические средства верхнего уровня асу тп.
- •27. Технология ole for Process Control (opc). Организация взаимодействия с контроллерами. Определение орс
- •28. Структура и способы организации информации. Схема информационных потоков асу тп.
- •30. Функциональная структура scada-систем, особенности scada как процесса управления, области применения.
- •31. Основные возможности современных scada-систем и основные требования к ним.
- •32. Тенденции развития аппаратных и программных средств scada.
- •33. Анализ характеристик scada-систем для их сравнения и выбора.
- •34. Scada-система InTouch: основные характеристики, архитектура, особенности среды разработки.
- •35. Scada-система InTouch: графический интерфейс пользователя, аварийные сигналы, средства информационного взаимодействия. Графический интерфейс
- •Средства информационного взаимодействия
- •Аварийные сигналы
Требования к мнемосхемам
Мнемосхема должна выполнять следующие функции:
наглядно отображать функционально-техническую схему управляемого объекта и информацию о его состоянии в объеме, необходимом для выполнения оператором его задач;
отображать связи и характер взаимодействия управляемого объекта с другими объектами и внешней средой;
сигнализировать обо всех существенных нарушениях в работе объекта;
обеспечивать быстрое выявление возможности локализации и ликвидации неисправностей.
Мнемосхема должна содержать только те элементы, которые необходимы оператору для контроля и управления объектом. Отдельные элементы или группы элементов, наиболее существенные для контроля и управления объектом, на мнемосхеме должны выделяться формой, размерами, цветом или другими способами. Части мнемосхемы, соответствующие автономно управляемым узлам объекта, могут быть выделены в блоки.
При компоновке мнемосхем должны учитываться привычные ассоциации оператора. Под привычной ассоциацией понимают связь, возникающую у человека с представлениями, полученными на основе прошлого опыта. Например, человек привык отображать какой-либо процесс, представляя его развитие слева направо. При компоновке мнемосхемы нужно учитывать это привычное представление и отображать развитие технологического процесса слева направо.
Соединительные линии на мнемосхеме должны быть сплошными, простой конфигурации, минимальной длины и иметь минимальное число пересечений. Следует избегать большого числа параллельных линий, расположенных рядом.
Предельными углами обзора фронтальной плоскости мнемосхемы должны быть:
по вертикали – не более 90°;
по горизонтали – не более 90°
по каждую сторону от нормали к плоскости мнемосхемы. Если мнемосхема выходит за пределы зоны, ограниченной предельными углами обзора, она должна иметь дугообразную форму или состоять из нескольких плоскостей (состыкованных или пространственно разнесенных), повернутых к оператору.
Комплекс мнемознаков, используемых на одной мнемосхеме, должен быть разработан как единый алфавит. Под единым алфавитом понимают комплекс мнемознаков, отображающих систему взаимосвязанных частей управляемого объекта и характеризующихся единством изобразительного решения. Необходимо, чтобы алфавит мнемознаков был максимально коротким, а различительные признаки мнемознаков были четкими. Мнемознаки сходных по функциям объектов должны быть максимально
унифицированы. Форма мнемознака должна соответствовать основным функциональным или технологическим признакам отображаемого объекта. Допускается брать за основу конструктивную форму объекта или его обозначение, принятое в технической документации. Размеры мнемознака должны обеспечивать оператору наиболее однозначное зрительное восприятие. Угловые размеры мнемознака должны быть не менее 20 угловых минут.
Угловые размеры мнемознака определяют по следующей формуле:
где a – угловой размер мнемознака; S – линейный размер мнемознака; l – расстояние от мнемознака до оператора.
Таким образом, линейный размер мнемознака равен
В случае если расстояние от мнемознака до оператора равно 600 мм, минимальный линейный размер мнемознака равен
Угловые размеры сложного мнемознака должны быть не меньше 35 угловых минут, а угловой размер наименьшей детали – не менее 6 угловых минут.
Вспомогательные элементы и линии не должны пересекать контур мнемознака или каким-либо другим способом затруднять его чтение.
Яркостной контраст между мнемознаками и фоном мнемосхемы должен быть не менее 65%.
Сигналы об изменении состояния объекта (включен - выключен, открыт - закрыт) должны различаться особенно четко цветом, формой или другими признаками.
Специальные сигналы (предупредительные, аварийные, внеплановой смены состояния и т.п.) должны отличаться большей интенсивностью (на 30-40%) от сигналов нормального режима, кроме того, они могут быть прерывистыми с частотой мигания 3-5 Гц.