
- •4) Классификация резьб. Геометрические параметры резьбы
- •6)Кпд винтовой пары.Условия самоторможения винтовой пары.Понятие о приведенном коэффициенте трения
- •7)Расчет витков крепежных резьб на прочность.
- •8) Незатянутое резьбовое соединение, нагруженное осевой растягивающей силой.
- •9)Расчет на прочность стержня болта (с зазором,и без зазора),нагруженных поперечной силой.
- •10) Расчет на прочность группы болтов.Допущения при расчете группы
- •11)Соединения призматической,цилиндрической,сегментной шпонками.
- •13)Виды сварных соединений. Расчет на прочность сварных соединений
- •14) Заклепочные соединения
- •15)Назначение и разновидности механических передач
- •16) Зубчатые передачи. Виды повреждений зубьев зубчатых колес
- •17) Усилия в зацеплении прямозубых цилиндрических колес и расчетная нагрузка
- •18)Вывод формулы для определения расчетного контактного напряжения(Герца)
- •20)Выбор допустимых напряжений при расчете цилиндрических и конических передач на контактную и изгибную выносливость
- •Угол подъема линии витка червяка на делительном цилиндре (делительный угол подъема)
- •27) Проектировочные расчеты валов на прочность
- •28) Проверочный (уточненный) расчет вала на сопротивление усталости
- •31) Подбор подшипников качения по статической грузоподъемности.
- •32)Подбор подшипников качения по динамической грузоподъемности
11)Соединения призматической,цилиндрической,сегментной шпонками.
Шпоночные и шлицевые соединения служат для закрепления на валу (или оси) вращающихся деталей (зубчатых колес, шкивов, муфт и т. п. По конструкции шпонки подразделяют на:
- призматические эти шпонки не имеют уклона и их закладывают в паз, выполненный на валу (шпонки имеют отверстия для их закрепления).Призматические направляющие шпонки с креплением на валу применяют в подвижных соединениях для перемещения ступицы вдоль вала.Рабочими являются боковые, более узкие грани шпонок высотой h. Размеры сечения шпонки и глубины пазов принимают в зависимости от диаметра d вала.
Шпонку запрессовывают в паз вала. Шпонку с плоскими торцами кроме того помещают вблизи деталей (концевых шайб, колец и др.), препятствующих ее возможному осевому перемещению. Призматические шпонки не удерживают детали от осевого смещения вдоль вала.
-сегментные представляют собой сегментную пластину, заложенную закругленной стороной в паз соответствующей формы, профрезерованный на валу.Сегментные шпонки, как и призматические, работают боковыми гранями. Их применяют при передаче относительно небольших вращающих моментов и часто применяют для конических концов валов. Сегментные шпонки (ГОСТ 24071-80) и пазы для них просты в изготовлении, удобны при монтаже и демонтаже (шпонки свободно вставляют в паз и вынимают). Широко применяют в серийном и массовом производстве;
- цилиндрические используют для закрепления деталей на конце вала. Отверстие под шпонку сверлят и обрабатывают разверткой после посадки ступицы на вал. При больших нагрузках ставят две или три цилиндрические шпонки, располагая их под углом 180° или 120°. Цилиндрическую шпонку устанавливают в отверстие с натягом. В некоторых случаях шпонке придают коническую форму.
Материал
шпонок. Шпонки
призматические, сегментные, клиновые
стандартизованы. Стандартные
шпонки изготовляют из специального
сортамента среднеуглеродистой
чистотянутой
стали с
Н/мм2
чаще всего
из сталей 45,
Ст6. Для
изготовления
специальных шпонок применяют
легированные стали.
Основным критерием работоспособности шпоночных соединений является прочность. Шпонки выбирают по таблицам ГОСТов в зависимости от диаметра вала, а затем соединения проверяют на прочность. Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений расчет на смятие. Проверку шпонок на срез в большинстве случаев не проводят. При расчете многошпоночного соединения допускают, что нагрузка распределяется равномерно между всеми шпонками.
Призматические
шпонки,расчет на прочность
где
Ft=2T/d
—
сила, передаваемая шпонкой; Асм
— площадь
смятия
Соединения
сегментными шпонками проверяют на
смятие:
Где lp=l
– рабочая длина шпонки; (h
–t1)
– рабочая глубина в ступице.Сегментная
шпонка узкая, поэтому в отличие от
призматической ее проверяют на
срез.Условие прочности на срез
12)Зубчатые(шлицевые) соединения. Зубчатые соединения вал – ступица представляют собой соединения, образуемые выступами – зубьями на валу, входящими во впадины соответствующей формы в ступице. Эти соединения можно представить как многошпоночные, у которых шпонки выполнены за одно целое с валом.
Зубчатые соединения по сравнению со шпоночными имеют:
а) большую несущую способность;
б) большую усталостную прочность вала;
в) лучшее центрирование деталей на валу и лучшее направление при перемещении детали вдоль вала.
Зубчатые соединения применяются в качестве подвижных и неподвижных.
В зависимости от формы сечения зубьев различают три вида соединений:
1) Прямобочные, имеющие на валу зубья постоянной толщины.
2) Эвольвентные, с профилем зубьев очерченым эвольвентой.
3) Треугольные, с сечением зуба в форме треугольника.
Прямобочные соединения в зависимости от нагрузочной способности трех серий: легкой, средней и тяжелой. Кроме того, эти соединения различают по системе центрирования ступицы на валу: по боковым граням,по наружному диаметру,по внутреннему диаметру
В эвольвентном зубчатом соединении профили зубьев такие же, как у зубчатых колес. Поскольку в шлицевом соединении перекатывания нет, высота зубьев уменьшена до 0,9 … 1 модуля и угол профиля рейки увеличен до 30 . Эвольвентные соединения обладают повышенной прочностью из – за большого числа зубьев и меньшей концентрации напряжений, связанной с закруглением профиля у основания зуба. Эти соединения перспективны, их применение ограничивается сложностью изготовления протяжек, с помощью которых нарезаются шлицы в ступицах.
Центрирование обычно осуществляется по боковым поверхностям, реже по наружному диаметру.
Соединения треугольного профиля применяют обычно в качестве неподвижных при стесненных радиальных габаритах. Центрирование в них осуществляется по боковым граням. Основными геометрическими параметрами являются числа зубьев, модули и угол впадин.
Зубчатые соединения выходят из строя из-за повреждения рабочих поверхностей: износа, смятия, заедания. В качестве расчетного критерия работоспособности принимается смятие боковых поверхностей шлицев:
,
Нм (2)
где z – число зубьев;
h – высота поверхности контакта зубьев (мм);
dср – средний диаметр поверхности контакта зубьев (мм);
-
коэффициент, учитывающий неравномерную
работу зубьев, обычно принимается равный
0,75;
l - длина поверхности контакта зубьев (мм);
Т – передаваемый крутящий момент (Нм).
Для зубьев прямоугольного профиля
(3)
где f - высота фаски.
Для зубьев эвольвентного профиля
h=m; dср=mz; (4)
Для зубьев треугольного профиля
(5)
В ответственных случаях, когда требуется плавность работы, большой срок службы, отсутствие зазоров, малые усилия перемещения применяют шариковые шлицевые соединения, в которых трение скольжения при осевых перемещениях заменено трением качения.