
- •Часть 2. Ядерно-физические методы
- •7. Физические основы радиометрии скважин
- •7.1. Взаимодействия гамма-квантов с веществом
- •7.2. Естественная радиоактивность
- •7.3. Массовые содержания ерэ и урановый эквивалент
- •7.4. Физическая, статическая и динамическая аномалии
- •7.5. Учет размеров и эффективности детектора
- •7.6. Взаимодействия нейтронов c веществом и классификация нейтронных методов
- •7.7. Области применений нейтронных методов
- •8. Нейтронные поля в однородных средах
- •8.1. Уравнение переноса излучения
- •8.2. Возрастное приближение
- •«Теоретические» и феноменологические уравнения поля
- •8.3. Полный возраст, длина и время замедления нейтронов
- •8.4. Одногрупповое диффузионное приближение
- •Неканонические формы уравнения переноса
- •8.5. Энергетический спектр нейтронов при наличии поглощения
- •8.6. Кинетика замедления нейтронов
- •8.7. Время замедления нейтронов и его дисперсия
- •8.8. Закономерности замедления нейтронов в однородных средах
- •8.9. Диффузия тепловых нейтронов
- •8.10. Кинетика диффузии нейтронов
- •8.11. Двухгрупповое дифузионное приближение
- •8.4. Гамма-излучение от захвата тепловых нейтронов в горных породах
- •8.5. Диффузионные характеристики вещества и их расчет
- •9. Стационарные нейтронные методы
- •9.1. Закономерности распределения нейтронов в системе скважина – пласт
- •9.2. Пространственный декремент поля нейтронов в системе скважина—пласт
- •9.3. Геометрические факторы зон в системе пласт
- •9.4. Глубинность исследования
- •9.5. Свойства геометрических факторов зон
- •9.6. Интерпретационные и метрологические параметры ннм
- •9.7. Чувствительность показаний прибора к изменению нейтронных характеристик пласта. Связь погрешности измерений с чувствительностью.
- •9.8. Теория нейтронного гамма-метода влияние излучения скважины на характер зависимости показаний нгм от пористости пород и хлоросодержания пластовой воды
- •9.9. Поправочная интерпретация данных ннм
- •9.10. Адаптивная интерпретационная модель ннм
- •9.11. Алгоритм определения эффективной пористости)
- •Подрисуночные подписи
- •9.12. Имитаторы пористых пластов для калибровки нейтронных зондов
- •Имитаторы пористых пластов и эквивалентные значения пористостей
- •10. Импульсные нейтронные методы
- •10.1. Способы измерений иннм (ингм) и алгоритмы определения диффузионных характеристик горных пород
- •Однозондовые модификации импульсных методов
- •Двухзондовые модификации импульсных методов
- •10.2. Двухкомпонентная интерпретационная модель инм
- •10.3. Спектрометрический импульсный нейтронный гамма-метод (ингм-с)
- •10.4. Задачи нефтегазопромысловой геологии, решаемые на измерений нейтронных характеристик горных пород
- •10.5. Физическая эквивалентность горных пород и пластовых флюидов по нейтронным свойствам
7.3. Массовые содержания ерэ и урановый эквивалент
Обозначим содержание j-го излучателя в единице объема породы через Qj, и соответствующее число испускаемых с энергией E гамма-квантов через Sj(E). Если излучатели равномерно заполняют все пространство, то интенсивность излучения J(E) на основании формулы (7.9) равна
(7.13)
где – массовый коэффициент ослабления; qj=Qj/ – массовое содержание излучателя. В выражении (7.10) индекс j пробегает значения j=1 (40К), j=2 (U+Ra с продуктами распада), j=3 (Th с продуктами распада).
Обратим внимание на то, что вследствие комптоновского механизма взаимодействия показания интегрального канала (ГМ) определяются не объемными, а массовыми содержаниями естественно-радиоактивных элементов (ЕРЭ).
Пусть интегральный канал ГМ скважинного радиометра (ННМ, НГМ, ГГМ, ИННМ, ИНГМ) регистрирует гамма-кванты со спектральной эффективностью (E), тогда показание прибора J будет
(7.14)
где
(7.15)
Величина Сj называется концентрационной чувствительностью (для j-го радионуклида) и определяет показание, соответствующее единице массового содержания j-го радионуклида (вместе с продуктами распада в состоянии радиоактивного равновесия), в однородной безграничной среде (или необсаженной сухой скважине).
Ни число распадов (активность), ни мощность экспозиционной дозы не характеризуют однозначно содержания ЕРЭ в породе и не обеспечивают сопоставимости результатов лабораторных и скважинных измерений.
При неспектрометрических измерениях по показаниям канала ГМ невозможно выделять гамма-излучение различных излучателей и количественно оценить содержание каждого из них в отдельности. Единственная возможность количественной интерпретации данных интегрального ГМ состоит в оценке суммарного содержания ЕРЭ в определенных единицах. Такими единицами могут быть эквивалентные массовые содержания отдельных радионуклидов, т. е. такие содержания, которым соответствуют одинаковые показания интегрального канала.
Допустим, что в однородной безграничной среде, окружающей прибор, равномерно распределен j-й излучатель с единичной массовой концентрацией qj =1. Определим эквивалентное по показаниям содержание урана eUj («урановый эквивалент j-го излучателя»):
J = Cj [1] CU eUj (7.16)
Откуда
eUj = Cj / CU ; [eUj] = [qj] (7.17)
Аналогично можно ввести калиевый (еKj) и ториевый (eТhj) эквиваленты:
eKj = Cj / CK ; eТhj = Cj / CTh
За единицу уранового эквивалента примем массовое содержание урана 10–4 % (эта величина получила обозначение ur):
10–4 % U = 1eUU 1ur.
В разведке на уран эта величина является искомой величиной. Однако для изучения коллекторов нефти и газа, содержания ЕРЭ в которых сравнительно невелики, ее применение требует обоснования. Из определений (7.15) – (7.16) следует, что величина eUj (или eKj, eThj) определяет массовое содержание урана (калия, тория), которому соответствует такое же показание канала, как и для единичного массового содержания j-го излучателя:
1 % K 1eUK = CK / CU , ur 10–4 % Th 1eUTh = CTh / CU, ur
На основании (7.16) и (7.17) урановый эквивалент eU суммарного содержания ЕРЭ определяет такое массовое содержание урана, при котором показание канала в однородной безграничной среде такое же, как при данном содержании ЕРЭ в их природной смеси:
.
(7.18)
Для определения концентрационных чувствительностей Сj необходимо выполнить измерения в четырех моделях пластов – «фоновой», «калиевой», «урановой», «ториевой» (для контроля дополнительно проводятся измерения в модели со смесью излучателей). Тогда на основании (7.15) получаем систему уравнений, разрешимую относительно Сj. Измерения выполняются в специальных моделях пластов, прошедших государственную аттестацию в качестве стандартных образцов содержаний ЕРЭ.
Используя определения (7.15) и (7.17), можно показать, что в отличие от Сj, значения eUj должны быть устойчивыми относительно изменений конструкционных параметров аппаратуры.
Экспериментальные данные подтверждают, что для различных типов аппаратуры значения Сj изменяются в широком диапазоне, однако соответствующие эквиваленты eUj остаются практически постоянными. Это означает, что для довольно широкого класса аппаратуры (интегральный канал приборов с диаметром более 6 см, предназначенных для исследования разрезов нефтегазовых скважин) параметр eUj(eKj, eThj) переходит из разряда метрологических в разряд физических. Независимо от типа аппаратуры урановый эквивалент eU вычисляется по известным содержаниям {qj} по правилу (7.18):
eU = 1,79qK [%] + qU [10–4 %] + 0,39qTh [10–4 %].
Оценим вклады j различных излучателей (К, U, Th) в результирующие показания канала интегрального ГМ:
,
где eU определяется выражением (7.18). Полагая qj = const, находим:
.
Используя численные значения eUj, легко оценить, что вклад калия составляет около 60%, а равновесных урана и тория – соответственно 30 и 10%.
Петрофизическая модель гамма-метода. Переход к определению суммарного содержания ЕРЭ в единицах уранового эквивалента позволяет строго сформулировать петрофизическую модель ГМ в виде
;
;
(7.19)
где – плотность породы; i, eUi, Ki – соответственно минералогические плотности, урановые эквиваленты и объемные содержания компонент. Эта модель включается в систему уравнений комплексной петрофизической интерпретации данных ГМ (в комплексе с другими методами ГИС).
Из петрофизической модели (7.16) следует, что, значения eU существенно зависят от множества факторов, причем эти зависимости (в частности, от содержания и типа глинистого цемента) в коллекторах различного типа могут существенно различаться. Однако в шкале относительной глинистости h=Кгл/(Кп + Кгл), нормированной на ее максимальное значение h* = h/hmax
h* = h/hmax , где hmax=1—/М
( - полная флюидоудерживающая способность коллектора, М – пористость матрицы) двойной разностный параметр
DeU(h*) =[eU(h*)eU(0)]/[eU(1)eU(0)], (7.20)
очень слабо зависит от параметра М (скелетной пористости) и практически не зависит от соотношения радиоактивностей матрицы и цемента. Для различных значений М мы имеем семейство нелинейных кривых (Рис.7.4) DeU(h*). При неизменных диаметре скважины и свойствах промежуточных зон выполняется равенство DeU = DJg , где DJg — обычный двойной разностный параметр ГМ
J =(JJmin)/(JmaxJmin), dскв. = const. (7.21)
Таким образом, из петрофизической модели ГМ для гранулярного коллектора вытекает, что параметр DeU определяется величиной нормированной эффективной пористости (нормированной относительной глинистости *). Следовательно, ГМ (ГМ-С) является одновременно и «методом относительной глинистости», и «методом эффективной пористости».
Р
ис.7.4.
Зависимости двойного разностного
параметра по урановому эквиваленту от
нормированной относительной глинистости
при различных значениях скелетной
пористости (шифр кривых, %).
Можно указать, по крайней мере, три признака применимости ГМ для определения эффективной пористости. Каждый из этих признаков состоит в наличии значимой корреляции между:
1) диаграммами ГМ и ПС (при отсутствии данных ГМ-С):
содержаниями калия, урана и тория;
содержаниями калия и тория при относительно низком содержании урана (признаки 2 и 3 — при наличии данных ГМ-С).
В сложных терригенных полиминеральных глинистых коллекторах условия применимости интегрального гамма-метода (ГМ) для определения эффективной пористости не выполняются. Применение гамма-спектрометрии (ГМ-С) существенно расширяет область применимости метода естественной радиоактивности, в частности, на случай полиминеральных глинистых коллекторов.