Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалка.Вопрос1..docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
501.66 Кб
Скачать

19.Влияние рекристаллизации на строение и свойства деформированного металла. Температура рекристаллизации.

Пластическая деформация (рис. 4.14) приводит к созданию неустойчивого состояния материала из-за возросшей внутренней энергии (внутренних напряжений). Деформирование металла сопровождается его упрочнением или так называемым наклепом. Самопроизвольно должны происходить явления, возвращающие металл в более устойчивое структурное состояние.

Рис. 4.14. Влияние нагрева на механические свойства и структуру нагартованного металла

К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки, другие внутризеренные процессы и образование новых зерен. Для снятия напряжений кристаллической решетки не требуется высокой температуры, так как при этом происходит незначительное перемещение атомов. Уже небольшой нагрев (для железа 300 –400 оС) снимает искажения решетки, а именно уменьшает плотность дислокаций в результате их взаимного уничтожения, слияния блоков, уменьшения внутренних напряжений, уменьшения количества вакансий и т.д.

Исправление искаженной решетки в процессе нагрева деформированного металла называется возвратом или отдыхом. При этом твердость металла снижается на 20-30 % по сравнению с исходным, а пластичность возрастает.

Параллельно с возвратом при температуре 0,25 – 0,3 Тпл происходит полигонизация (сбор дислокаций в стенки) и образуется ячеистая структура.

Одним из способов снятия внутренних напряжений при деформации материалов является рекристаллизация. Рекристаллизация, т.е. образование новых зерен, протекает при более высоких температурах, чем возврат, может начаться с заметной скоростью после нагрева выше определенной температуры. Чем выше чистота металла, тем ниже температура рекристаллизации. Между температурами рекристаллизации и плавления существует связь:

Трек = а * Тпл,

где а – коэффициент, зависящий от чистоты металла.

Для технически чистых металлов а = 0,3 – 0,4, для сплавов а = 0,8. Цель рекристаллизационного отжига – устранение наклёпа холоднокатанной стали, содержащей 0,1 – 0,2 % С.

Режим рекристаллизационного отжига: нагрев до 600-700 оС (Трекр = 0,4 Тпл по абсолютной шкале), выдержка, которая зависит от геометрии изделий (для тонких листов 25-30 мин.) и охлаждение с печью.

Рис. 9.2. Левый угол диаграммы Fe – Fe3 С и температурные области при термической обработке сталей

20.Вторичная кристаллизация(перекристаллизация) металлов и ее влияние на формируемую структуру металла.

Различные кристаллические формы одного элемента называют полиморфными, или аллотропическими модификациями. Их обозначают греческими буквами α, β, γ и δ, начиная с той формы, которая существует при более низкой температуре. Превращение одной модификации в другую при охлаждении сопровождается выделением тепла, а при нагреве—поглоще­нием тепла и протекает при постоянной температуре. На кри­вой охлаждения чистого железа при температурах, отвечающих полиморфным превращениям, можно видеть горизонтальные площадки (рис. 4.9). Полиморфные превращения металлов представляют собой процесс вторичной кристаллизации, или перекристаллизации. Последняя осуществляется аналогично кристаллизации из жидкого состояния.

Вторичная кристаллизация имеет большое практическое значение и служит основой для ряда процессов термической обработки, старения и т. д., значительно изменяющих и улучшающих свойства сплавов.

Большинство процессов вторичной кристаллизации связано с диффузией. Диффузия в твердых сплавах возможна по ряду причин. В частности, в растворах замещения она протекает бла-годаря наличию незаполненных узлов (вакансий) в решетках. Перемещаться могут как атомы растворителя, так и атомы растворенного вещества. При образовании растворов внедрения перемещение растворенных атомов происходит через междоузлия решеток.

Диффузия протекает тем быстрее, чем больше разность концентр;.в п выше температура.

I (од к о а г у л я ц и е й понимают рост крупных кристаллов за счет мелких; под с ф е р о и д и з а ц и е й — превращение вытянутых кристаллов в округленные. Оба процесса протекают вследствие стремления системы к уменьшению свободной энергии. В данном случае ЭТО достигается потому, что отношения суммы

поверхностей зерен к их объемам становятся меньше. Коагуляция и сфероидизация протекают тем легче, чем выше температура.

На рис. 41 представлена диаграмма состояния сплава, в котором растворимость второго компонента в твердом растворе уменьшается. На этой диаграмме (в отличие от диаграммы рис. 39) появляется линия EQ, характеризующая выделение избыточных кристаллов компонента В, которые называются вторичными (В2), в отличие от первичных кристаллов (В\), которые выделяются по линии CD.

Для примера рассмотрим ход образования вторичных кристаллов при охлаждении твердых растворов а с концентрацией К.

При температуре t\ структура однофазна, при достижении линии EQ раствор становится насыщенным и по мере дальнейшего охлаждения из него выделяется избыточная фаза В2, последняя может выделяться по границам кристаллов а и принимать вид сетки. Здесь также сначала происходит образование зародышей и затем их рост Однако место появления зародышей и их рост заранее определено поверхностями первичных зерен.

Иногда расположение вторичной фазы в виде сетки нежелательно, тогда или предупреждают ее образован не, или устраняют. Устраняют сетку по-разному, например, сфероидизирую-щим отжигом.

Кристаллизация по диаграмме (рис. 41) дает возможность значительно изменять свойства сплава путем закалки и отпуска или путем старения.