
- •Предисловие
- •Глава 1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Структура теоретической метрологии
- •1.3. Краткий очерк истории развития метрологии
- •2.1.2. Свойства, проявляющие себя только в отношении эквивалентности. Понятие счета
- •2.1.3. Интенсивные величины, удовлетворяющие отношениям эквивалентности и порядка. Понятия величины и контроля
- •2.1.5. Шкалы измерений
- •2.2. Измерение и его основные операции
- •2.3. Элементы процесса измерений
- •2.4. Основные этапы измерений
- •2.5. Постулаты теории измерений
- •2.6. Классификация измерений
- •2.7. Понятие об испытании и контроле
- •3.2. Принципы построения систем единиц физических величин
- •3.3. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны, единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Способы поверки средств измерений
- •3.4.5. Стандартные образцы
- •3.5. Эталоны единиц системы си
- •Глава 4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешностей
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерений
- •Глава 5. Систематические погрешности
- •5.1. Систематические погрешности и их классификация
- •5.2. Способы обнаружения и убтранения систематических погрешностей
- •Глава 6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.2.4. Энтропийное значение погрешности
- •6.3. Основные законы распределения
- •6.3.1. Общие сведения
- •6.3.2. Трапецеидальные распределения
- •6.3.3. Экспоненциальные распределения
- •6.3.4. Нормальное распределение (распределение Гаусса)
- •6.3.5. Уплощенные распределения
- •6.3.6. Семейство распределений Стъюдента
- •6.3.7. Двухмодальные распределения
- •6.4. Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал
- •Глава 7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •8.4. Совместные и совокупные измерения
- •Глава 9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей
- •9.2. Суммирование систематических погрешностей
- •9.3. Суммирование случайных погрешностей
- •9.4. Суммирование систематических и случайных погрешностей
- •9.5. Критерий ничтожно малой погрешности
- •Глава 10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных сигналов
- •10.6. Интегральные параметры периодического сигнала
- •Глава 11. Средства измерений
- •11.1. Понятие о средстве измерений
- •11.2. Статические характеристики и параметры средств измерений
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений
- •11.5. Элементарные средства измерений
- •11.6. Комплексные средства измерений
- •11.6.1. Измерительные приборы и установки
- •11.6.2. Измерительные системы и измерительно-вычислительные комплексы
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Структурная схема прямого преобразования
- •11.7.3. Уравновешивающее преобразование
- •11.7.4. Расчет измерительных каналов средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики погрешностей средств измерений
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •12.7. Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Расчет погрешностей средств измерений по нормированным метрологическим характеристикам
- •12.9. Классы точности средств измерений
- •Глава 13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •13.3. Математические модели изменения во времени погрешности средств измерений
- •13.3.1. Линейная модель изменения погрешности
- •13.3.2. Экспоненциальная модель изменения погрешности
- •13.3.3. Логистическая модель изменения погрешности
- •13.4. Показатели метрологической надежности средств измерений
- •13.5. Метрологическая надежность и межповерочные интервалы
- •Заключение
- •Приложение 1. Статистические таблицы
- •Приложение 2. Список основных государственных стандартов и нормативных документов в области метрологии
- •Приложение 3. Рабочая программа по курсу "Теоретическая метрология" специальности 190800 "Метрология и метрологическое обеспечение"
- •Тема 1. Предмет и задачи метрологии
- •Тема 2. Основные представления теоретической метрологии
- •Тема 3. Теория воспроизведения единиц физических величин и передачи их размеров (теория единства измерений)
- •Тема 4. Погрешности измерений
- •Тема 5. Систематические погрешности
- •Тема 6. Случайные погрешности
- •Тема 7. Грубые погрешности и методы их исключения
- •Тема 8. Обработка результатов измерений
- •Тема 9. Суммирование погрешностей
- •Тема 10. Измерительные сигналы
- •Тема 11. Средства измерений
- •Тема 12. Метрологическая служба Российской Федерации
- •Литература
- •Глава 1. Предмет и задачи метрологии 6
- •Глава 2. Основные представления 15
- •Глава 3. Теория воспроизведения 55
- •Глава 4. Основные понятия теории 87
- •Глава 5. Систематические погрешности 105
- •Глава 6. Случайные погрешности 118
- •Глава 11. Средства измерений 209
- •Глава 12. Метрологические 266
- •Глава 13. Метрологическая надежность средств измерений 292
- •105318, Москва, Измайловское ш., 4
- •432980, Г. Ульяновск, ул. Гончарова, 14
8.4. Совместные и совокупные измерения
Эти виды измерений характеризуются тем, что значения искомых величин рассчитывают по системе уравнений, связывающих их с некоторыми другими величинами, определяемыми посредством прямых или косвенных измерений. При этом измеряются несколько комбинаций значений указанных величин. Каждая такая комбинация позволяет получить одно уравнение, а система содержит всю информацию о значениях искомых величин и имеет вид
где F; — символ функциональной зависимости между величинами в i-м опыте; i=1; 2;...; n; n — число опытов; Qj — значения искомых величин, общее число которых равно m; Хг(i) — полученные в i-м опыте значения k величин, измеряемых прямыми или косвенными методами.
Если Qi являются значениями одной и той же величины, то измерения называются совокупными, если разных физических величин, — то совместными.
После подстановки в исходную систему уравнений результатов Хr(i) прямых или косвенных измерений и проведения необходимых преобразований получим n уравнений, содержащих лишь искомые величины и числовые коэффициенты:
Такие уравнения называют условными.
Для того чтобы рассчитать значения искомых величин, достаточно иметь m уравнений, т.е. столько же, сколько содержится неизвестных. Тогда результаты измерений и доверительные границы их погрешностей можно найти методами обработки результатов косвенных измерений. Однако обыкновенно для уменьшения погрешностей результатов измерений делается значительно больше измерений, чем это необходимо для определения неизвестных, т.е. n > m.
Вследствие ограниченной точности определения величин Хг условные уравнения одновременно не обращаются в тождества ни при каких значениях искомых величин. И поскольку найти истинные значения искомых величин невозможно, то задача сводится к нахождению их оценок, представляющих собой наилучшие приближения к истинным значениям. Предположим, что Q̃j , где j =1, 2, ..., m, наилучшие приближения к неизвестным Qj. Если значения этих оценок подставить в условные уравнения, то их правые части будут отличаться от левых. Для получения тождеств нужно записать:
(8.9)
где vi — величины, называемые остаточными погрешностями условных уравнений. Если в систему условных уравнений подставить истинные значения искомых величин, то остаточные погрешности превратятся в случайные погрешности условных уравнений. Одним из наиболее общих способов отыскания оценок истинных значений измеряемых величин является регрессионный анализ, или, как его часто называют, метод наименьших квадратов. Согласно ему оценки Q} выбираются так, чтобы минимизировать сумму квадратов остаточных погрешностей условных уравнений. Сумма квадратов остаточных погрешностей, определенных в соответствии с системой условных уравнений (8.9), составляет
и достигает минимума при системе значений Qj, обращающей в нуль все частные производные от S2 по искомым величинам:
Выражая остаточные погрешности через функции, стоящие в левой части условных уравнений, получаем систему из m уравнений с m неизвестными:
где j = l, 2,..., m, которая может быть решена относительно оценок qj искомых величин.
При решении задачи в общем случае, когда условные уравнения нелинейны, а результаты отдельных измерений коррелированы, иногда возникает ряд непреодолимых трудностей. Задача относительно несложно решается лишь тогда, когда условные уравнения линейны или приведены к линейным известными способами и при отсутствии корреляции между результатами отдельных наблюдений. Ее решение подробно рассмотрено в [3].
Оценки, даваемые методом наименьших квадратов, являются состоятельными и несмещенными, а при нормальном распределении результатов измерений и эффективными. Детальное описание процесса обработки результатов совокупных и совместных измерений приведено в [12, 24].
Контрольные вопросы
1. Что такое вариационный ряд и интервалы группирования? Как определяется число интервалов группирования?
2. Что такое гистограмма, полигон и кумулятивная кривая?
3. Перечислите этапы обработки результатов прямых многократных измерений.
4. Для чего необходимо идентифицировать форму закона распределения результатов измерений? Расскажите, каким образом это делается.
5. Напишите алгоритм обработки результатов однократных измерений с точным оцениванием погрешностей.
6. Как обрабатываются результаты линейных косвенных измерений?
7. В чем состоит метод линеаризации и как он используется для обработки результатов нелинейных косвенных измерений?
8. Напишите алгоритм обработки результатов косвенных измерений при использовании метода приведения.