Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
9,10,12-16,21-24.doc
Скачиваний:
10
Добавлен:
01.03.2025
Размер:
995.33 Кб
Скачать

2) Согласно формуле Остроградского-Гаусса,

Где через

Формула Остроградского-Гаусса связывает поверхностные интегралы второго рода с соответствующими тройными интегралами.  Данную формулу можно записать также в координатной форме:

В частном случае, полагая  , получаем формулу для вычисления объема тела G:

Приложение к теореме Остроградского-Гаусса

Для любого вектора a можно записать его поток:

Так как интегрирование и дифференцирование по сути своей противоположные операции, то можно записать, например:

Интегрирование и дифференцирование по одному и тому же параметру по сути взаимно компенсирующие операции. Тогда можно записать для вектора а:

Где dV=dx*dy*dz. А так же:

Таким образом, можно связать линейный, поверхностный и объемный интегралы, т.е. можно переходить от линейного к поверхностному, и от поверхностного к объёмному интегралу. Приложение к теореме Остроградского-Гаусса мы используем при рассмотрении уравнений Максвелла.

  1. Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных)полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий,физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя).

В многоэлектронных атомах, как и в атоме водорода, состояние каждого электрона можно характеризовать квантовыми числами. Межэлектронное отталкивание приводит к тому, что энергия электронов, имеющих одно и то же значение n, но разные значения l, становится различной. Последовательность заполнения е подуровней определяется принципом наименьшей энергии, принципом Паули и правилом Хунда. Принцип наименьшей энергии: заполнение электронами АО происходит в порядке возрастания их энергии. Установлена энергетическая диаграмма для различных АО в много-е нейтральных атомов, находящихся в основном состоянии(с наименьшей энергией). Правило Клечковского: энергия АО возрастает в соотв. с увеличением n+l. При одинаковом значении суммы энергия меньше у АО с меньшим значением n.  Принцип Паули: в атоме не м.б. 2 е с одинаковым значением 4х квантовых чисел. Этот набор значений полностью определяет энергетическое состояние е. 2 е, находящихся на одной АО называются спаренными. Общее число орбиталей на эн. уроне со зн. n = n*2. Следовательно, max электронная емкость = 2n*2.

Оптический спектр атома определяется не всеми электронами в атоме, а изменением энергетического состояния внешних, валентных электронов. Остальные электроны оболочки не участвуют в образовании оптического спектра, но влияют на значение уровней энергии валентных электронов. Оптические спектры атомов экспериментально сравнительно хорошо изучены и систематизированы. Если оптические спектры атомов являются основным источником информации о внешних электронах, то характеристические рентгеновские спектры содержат информацию о внутренних электронах в атоме.

Рентгеновские спектры, спектры испускания и поглощения рентгеновских лучей, т. е. электромагнитного излучения в области длин волн от 10-4до 103 . Для исследования спектров рентгеновского излучения, получаемого, например, в рентгеновской трубке, применяют спектрометры с кристаллом-анализатором (или дифракционной решёткой) либо бескристальную аппаратуру, состоящую из детектора (сцинтилляционного, газового пропорционального или полупроводникового счётчика) и амплитудного анализатора импульсов.

№23

Согласно волновой теории, предложенной Гюйгенсом (Принцип Гюйгенса), свет распространяется вследствие волнового движения особой среды - эфира, который наделен механическими свойствами - упругостью и плотностью.

Принцип Гюйгенса - каждая точка среды, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн.

 

Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.[1] Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узловамплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частотафаза и коэффициент затухания волны в месте отражения.

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде[2] и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.

2) Вычислим работу при перемещении электрического заряда в однородном электрическом поле с напряженностью   . Если перемещение заряда происходило по линии на пряженности поля на расстояние Ad = d1-d2 (рис. 110), то работа равна