
- •2. Адиабати́ческий, или адиаба́тный проце́сс — термодинамический процесс в макроскопической системе, при котором система не обменивается тепловой энергией с окружающим пространством .
- •Вывод уравнения
- •Билет №13
- •Билет№14
- •Билет№15
- •2.*Энтропия-поворот, превращение. В физике понятие энтропии означает часть внутренней энергии замкнутой системы, которая постоянно сохраняется и не превращается в другие виды энергии.
- •Билет№16
- •Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.
- •При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:
- •Поле на близких расстояниях
- •Постулаты Бора:
- •2) Согласно формуле Остроградского-Гаусса,
- •Где через
- •Приложение к теореме Остроградского-Гаусса
- •Где d1 и d2 — расстояния от начальной и конечной точек до пластины в.
Постулаты Бора:
Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.
Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульсаквантуется:
, где
— натуральные числа, а
— постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.
При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии
, где
— энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.
Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома[1]. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.
«Квантовая теория строения атомов. 1. Среди мыслимых состояний движения атомной системы имеется ряд так называемыхстационарных состояний, относительно которых предполагается, что движение частиц в этих состояниях, подчиняясь в значительном объеме классическим механическим законам, отличается, однако, своеобразной механически необъяснимой устойчивостью, в результате которой следует, что всякое остаточное изменение движения системы должно состоять в полном переходе из одного состояния в другое. 2. В самих стационарных состояниях, в противоречие с классической электромагнитной теорией, излучения не происходит, однако процесс перехода между двумя стационарными состояниями может сопровождаться электромагнитным излучением, обладающим теми же свойствами, как излучение, посылаемое на основании классической теории электрической частицей, совершающей гармонические колебания с постоянной частотой. Эта частота ν не находится, однако, в простом отношении к движению частиц атома и определяется условием
hν = E' – E", где h – постоянная Планка, E' и E" – значение атомной энергии в двух стационарных состояниях, образующих начальное и конечное состоянии процесса излучения. Обратно, освещение атома электромагнитными волнами этой частот может привести к процессу поглощения, переводящее атом из конечного состояния в начальное».
№22
Процесс распространения колебаний в сплошной среде называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.
Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распространения волны.
Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.
Поскольку волновые процессы обусловлены совместным колебанием элементов динамической системы (осцилляторов, элементарных объёмов), они обладают как свойствами колебаний своих элементов, так и свойствами совокупности этих колебаний. К первым относится временная периодичность — скорость изменения фазы с течением времени в какой-то заданной точке, называемую частотой волны ; К волновым свойствам относится пространственная периодичность — скорость изменения фазы (запаздывание процесса во времени) в определённый момент времени с изменением координаты — длина волны λ.
Временная и пространственная периодичности взаимосвязаны. В упрощённом виде для линейных волн эта зависимость имеет следующий вид[4]:
где
c — скорость распространения волны в
данной среде.
Для сложных процессов с дисперсией и нелинейностью, данная зависимость применима для каждой частоты спектра, в который может быть разложен любой волновой процесс.
|
|
– это уравнение плоской волны. Интенсивность волны
Для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии.