Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elektrotekhnika.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
617.47 Кб
Скачать
  1. Электротехника - отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, получения и изменения химического состава веществ, производства и обработки материалов, передачи информации, охватывающая вопросы получения, преобразования и использования электрической энергии в практической деятельности человека.

Электрическая цепь, совокупность источников, приёмников электрической энергии и соединяющих их проводов. Кроме этих элементов, в Э. ц. могут входить выключатели, переключатели, предохранители и другие электрические аппараты защиты и коммутации, а также измерит, и контрольные приборы. В Э. ц. осуществляются передача, распределение и преобразование электрической (электромагнитной) или других видов энергии, связанные с наличием в цепи электрического тока, разности потенциалов, электродвижущей силы (эдс) и т. П

Источник электрической энергии – это электротехническое изделие (устройство), преобразующее различные виды энергии в электрическую энергию

Приемник электрической энергии – это устройство, в котором происходит преобразование электрической энергии в другой вид энергии для ее использования

  1. Постоя́нный ток — электрический ток, параметры, свойства и направление которого не изменяются (в различных смыслах) со временем. Ток, величина которого постоянна во времени.

Переме́нный ток — электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.

В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

3. Схема замещения позволяет определить токи, потери мощности и падения напряжения в асинхронной машине. При этом нужно учитывать, что в обмотке вращающегося ротора проходит ток, действующее значение и частота которого зависят от частоты вращения.

Эквивале́нтная схе́ма (схема замещенияэквивалентная схема замещения) — электрическая схема, в которой все реальные элементы заменены максимально близкими по функциональности цепями из идеальных элементов.

Необходимость :

В эквивалентной схеме могут быть отражены, при необходимости, различные паразитные эффекты: утечки, внутренние сопротивления и т.д. Эквивалентная схема может составляться как для одного элемента, так и для сложной цепи

Идеальные элементы:

В эквивалентных схемах используются перечисленные ниже идеальные элементы. Предполагается также, что геометрические размеры эквивалентной схемы настолько малы, что какие-либо эффекты длинных линий отсутствуют, то есть эквивалентная схема рассматривается как система с сосредоточенными параметрами.

  • Резистор. Идеальный резистор характеризуется только сопротивлениемИндуктивностьемкость, а также сопротивление выводов равны нулю.

  • Конденсатор. Идеальный конденсатор характеризуется только ёмкостью. Индуктивность, утечка, тангенс угла потерьдиэлектрическое поглощение а также сопротивление выводов равны нулю.

  • Катушка индуктивности. Идеальная катушка индуктивности характеризуется только индуктивностью. Емкость, сопротивление потерь, а также сопротивление выводов равны нулю.

  • Источник ЭДС. Идеальный источник ЭДС характеризуется только своим напряжениемВнутреннее сопротивление и сопротивление выводов равны нулю.

  • Источник тока. Идеальный источник тока характеризуется только своим током. Утечка равна нулю.

  • Проводники. Элементы эквивалентной схемы соединены идеальными проводниками, то есть индуктивность, емкость и сопротивление проводников равны нулю.

4.

Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии.

5 вопрос

Индуктивность - физическая величина, характеризующая магнитные свойства электрической цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пространстве магнитное поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо пропорционален силе тока I.

определяет энергию W магнитного поля тока:

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд.

Энергия заряженного плоского конденсатора Eк равна работе A, которая была затрачена при его зарядке, или совершается при его разрядке

A = CU2/2 = Q2/2С = QU/2 = Eк.

6 Вопрос

1. Резистивный элемент (резистор)

Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом´ м) или обратной величиной – удельной проводимостью   (См/м).

В простейшем случае проводника длиной   и сечением S его сопротивление определяется выражением

.

О сновной характеристикой резистивного элемента является зависимость   (или  ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость   представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением

или

,

где   - проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое   и дифференциальное   сопротивления.

Резистивные элементы в цепях постоянного тока могут быть использованы и в качестве обогревочных. Наиболее часто их используют в качестве токоограничительных, в качестве делителей напряжения, во времязадающих цепочках и частотных фильтрах совместно с емкостными и индуктивными элементами.

Вопрос 7

2. Индуктивный элемент (катушка индуктивности) Индуктивный элемент в цепи постоянного тока

Если в электрическую цепь включить индуктивность, то она будет препятствовать мгновенному появлению п олного тока в отличие от резистора. Здесь для примера R = 3Ома, L = 0,1Гн. В момент включения сопротивление катушки будет велико и она возьмет на себя все напряжение источника, а ток будет нулевым. Постепенно сопротивление катушки будет уменьшаться, напряжение на ней будет также уменьшаться, а ток через нее возрастать. В конце концов сопротивление катушки станет почти нулевым, а ток максимальным и его величина будет ограничена лишь резистором R, выполняющим в данном случае роль ограничительно сопротивления в тот момент, когда сопротивление катушки станет нулевым, чтобы не возникло короткого замыкания. Это явление получило название самоиндукции. Она препятствует нарастанию силы тока при включении и убыванию силы тока при выключении. Явление самоиндукции можно наблюдать, собрав цепь из катушки, резистора и двух ламп(рис.2а). Резистор должен иметь такое же сопротивление, как и провод катушки. Опыт покажет, что при замыкании цепи лампа, включенная последовательно с катушкой, загорить позже, чем включенная с резистором. Нарастанию тока будет препятствовать явление самоиндукции, рассмотренная на рис.2. При отключении вспыхнут обе лампы. Резкому убыванию тока будет препятствовать все та же самоиндукция.

Вопрос 8

3. Емкостный элемент (конденсатор)

Конденсатор в цепи постоянного тока ведет себя наоборот по сравнению с индуктивностью. Его сопротивление в момент подачи напряжения равно почти нулю и ток в цепи ограничен только токоограничительным резистором R. Соответственно, напряжение в первый момент на емкости нулевое. Постепенно сопротивление конденсатора постоянному току возрастает, ток в цепи падает, а конденсатор постепенно "берет на себя" все напряжение источника. После зарядки напряжение конденсатора равно напряжению источника, только в обратной полярности. Это показано на рис.3а. Такие схемы получили название схем замещения. Из нее видно, что источник напряжения и конденсатор представляют из себя как бы две батарейки, включенные не последовательно(иначе напряжения сложились бы, что противоречило бы имеющемуся нулевому току), а навстречу друг другу. В заключение отметим, что в данной схеме расчет произведен для R = 3Ом и С = 2мкФ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]