Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопрос 36 - 43.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
594.63 Кб
Скачать

Вопрос 38. Множественная регрессия.

Множественная (многофакторная) регрессия. Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии, описываемой функцией вида:

.

Построение моделей множественной регрессии включает этапы:

  1. выбор формы связи (уравнения регрессии);

  2. отбор факторных признаков;

  3. обеспечение достаточного объема совокупности для получения несмещенных оценок.

Выбор типа уравнения затрудняется тем, что для любой формы зависимости можно выбрать целый ряд уравнений, которые в определенной степени будут описывать эти связи. Поскольку уравнение регрессии строится главным образом для объяснения и количественного выражения взаимосвязей, оно должно хорошо отражать сложившиеся между исследуемыми факторами фактические связи.

Практика построения многофакторных моделей взаимосвязи показывает, что все реально существующие зависимости между социально-экономическими явлениями можно описать, используя пять типов моделей:

  1. линейная: ;

  2. степенная: ;

  3. показательная: ;

  4. параболическая: ;

  5. гиперболическая: .

Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации. Нелинейные формы зависимости приводятся к линейным путем линеаризации.

Важным этапом построения уже выбранного уравнения множественной регрессии являются отбор и последующее включение факторных признаков.

Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена на основе эвристических (интуитивно-логических) или многомерных статистических методов анализа.

Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность метода шаговой регрессии заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым «прямым методом». При проверке значимости введенного фактора определяется, насколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции (R2). Одновременно используется и обратный метод, т.е. исключение факторов, ставших незначимыми на основе t-критерия Стьюдента.

При построении моделей регрессии можно столкнуться и с проблемой мультиколлинеарности, под которой понимается тесная зависимость между факторными признаками, включенными в модель. Мультиколлинеарность существенно искажает результаты исследования.

Одним из индикаторов определения наличия мультиколлинеарности между факторными признаками является превышение величины парного коэффициента корреляции 0,8 ( ).

Устранение мультиколлинеарности может реализовываться через исключение из корреляционной модели одного или нескольких линейно-связанных факторных признаков или преобразованием исходных факторных признаков в новые, укрупненные факторы.

Пример. По данным о сумме активов (у), кредитных вложений (х1) и величине собственного капитала (х2) коммерческих банков Белоруссии построить множественное уравнение связи. Связь предполагается линейной. Расчетная таблица для определения параметров уравнения регрессии представлена в таблице 9.4.

Решение.

Таблица 8.4

банк

активов млрд нац. руб.у

Кредит.вложения,млрд нац. руб. х1

Собствен. Капитал, млрд.нац. руб. х2

1

3176

2496

209

7927296

6230016

10086976

521664

43681

663784

3153

2

3066

1962

201

6015492

3849444

9400356

394362

40401

616266

3000

3

2941

783

177

2302803

613089

8649481

138591

31329

520557

2554

4

1997

1319

136

2634043

1739761

3988009

179384

18496

271592

1886

5

1865

1142

175

2129830

1304164

3478225

199850

30625

326375

2533

6

1194

658

88

785652

432964

1425636

57904

7744

105072

1057

7

518

311

60

161098

96721

268324

18660

3600

31080

574

Итого

14757

8671

1046

21956214

14266159

37297007

1510415

175876

2534726

14757

.

Система нормальных уравнений имеет вид:

;

;

;

;

;

.

Отсюда: ; ; ;

.

Расчеты показали, что с увеличением кредитных вложений на 1 млрд нац. руб. и собственного капитала коммерческих банков Белоруссии на 1 млрд нац. руб. стоимость их активов возрастает соответственно на 0,0368 и 16,77 млрд нац. руб.