
- •Землеведение.
- •Вопрос 1. Общая характеристика Солнечной системы.
- •Вопрос 2. Влияние космических тел Солнечной системы на процессы и явления, происходящие на Земле.
- •Вопрос 3. Солнечное излучение, его состав и свойства электромагнитных волн.
- •Вопрос 4. Солнечный ветер и его компоненты.
- •Вопрос 5. Роль солнечного излучения в возникновении фотохимических реакций и реакций рекомбинации. Суть этих реакций.
- •Вопрос 6. Современные представления о магнитосфере.
- •Вопрос 7. Роль магнитосферы в защите Земли от плазмоидов и корпускулярных частиц. Понятие о радиационных поясах и магнитных ловушках.
- •Вопрос 8. Развитие представлений о форме и размерах Земли. Оценка вклада Аристотеля, Эратосфена и и. Ньютона в решении данного вопроса.
- •Вопрос 9. Доказательства шарообразности Земли.
- •Вопрос 10. Современные представления о форме нашей Планеты. Земля как трехосный эллипсоид и геоид.
- •Вопрос 11. Осевое вращение Земли и его влияние на форму нашей Планеты, возникновение суточной ритмики природных процессов и возможности построения сетки географических координат.
- •Вопрос 12. Осевое вращение Земли и время. Понятие о местном и поясном времени.
- •Вопрос 13. Осевое вращение Земли и сила Кориолиса, влияние последней на направление ветров в приземном слое атмосферы и направление течений в Мировом океане.
- •Вопрос 14. Явление прецессии, его природа и отдаленные последствия для нашей Планеты.
- •Вопрос 15. Орбитальное вращение Земли: параметры Земной орбиты, скорость орбитального вращения и ее изменчивость в течение года. Причины изменения скорости орбитальности вращения Земли.
- •Вопрос 17. Географическая обусловленность выделения тропиков и полярных кругов.
- •Вопрос 18. Солнечная радиация как часть солнечного излучения. Солнечная постоянная. Причины неодинакового поступления солнечной радиации на верхней границе атмосферы в «зимнее» и «летнее» полугодие.
- •Вопрос 19. Ослабление солнечной радиации в атмосфере. Роль числа оптических масс и коэффициента прозрачности атмосферы в этом процессе.
- •Вопрос 20. Радиационный баланс, как соотношение прихода и расхода солнечной энергии, формула радиационного баланса.
- •Вопрос 21. Особенности нагревания суши и водоемов.
- •Вопрос 22. Специфика нагревания атмосферного воздуха. Роль конвекции, турбулентности и адвекции в этом процессе.
- •Вопрос 23. Адиабатические процессы в атмосфере. Сущность сухоадиабатического процесса.
- •Вопрос 24. Сущность влажноадиабатического процесса и его влияние на нагревание атмосферного воздуха.
- •Вопрос 25. Происхождение атмосферы и ее газовый состав.
- •Вопрос 26. Строение атмосферы и особенности процессов, протекающих в ее отдельных структурных подразделениях.
- •Вопрос 27. Современные представления о природе «парникового эффекта».
- •Вопрос 28. Гидросфера Земли и ее происхождение и структура.
- •Вопрос 29. Основные свойства природных вод: соленость, плотность и особенности перехода жидкой фазы воды в твердое состояние.
- •Вопрос 30. Приливные явления в гидросфере, причины их возникновения. Особенности и распространение экваториальных и тропических приливов.
- •Вопрос 31. Внутреннее строение Земли. Отличие земной коры океанического и континентального типа.
- •Вопрос 32. Основные черты устройства земной поверхности и гипотезы, объясняющие происхождение планетарных и мегаформ рельефа Земного шара.
- •Вопрос 34. Роль земных растений в формировании газового состава атмосферы.
- •Вопрос 35. Взаимодействие биосферы с литосферой и гидросферой.
- •Вопрос 36. Географическая оболочка, ее специфика и границы. Саморегулирование, функционирование и целостность географической оболочки.
- •Вопрос 37. Зональность как основная закономерность географической оболочки.
- •Вопрос 38. Круговороты вещества и энергии в литосфере, гидросфере, атмосфере, биосфере и географической оболочке.
- •В литосфере.
- •В гидросфере
- •В атмосфере
- •В биосфере
- •В географической оболочке.
Вопрос 5. Роль солнечного излучения в возникновении фотохимических реакций и реакций рекомбинации. Суть этих реакций.
Фотохимические реакции — химические реакции, которые инициируются воздействием электромагнитных волн, в частности — светом. Примерами фотохимических реакций являются фотосинтез в растениях, распад бромида серебра в светочувствительном слое фотопластинки, превращение молекул кислорода в озон в верхних слоях атмосферы, фотоизомеризация, фотохимически инициируемые перициклические реакции, фотохимические перегруппировки (напр. ди-π-метановая перегруппировка) и т.п.
Основными требованиями для фотохимических реакций являются:
• энергия источника излучения должна соответствовать энергии электронного перехода между орбиталями;
• излучение должно быть способным достичь целевых функциональных групп и не быть заблокированным реактором и другими функциональными группами.
Фотовозбуждение — первая стадия фотохимического процесса, когда реагирующее вещество переходит в состояние с повышенной энергией. Фотосенсибилизатор поглощает излучение и передаёт энергию реагирующему веществу. Обратный процесс называется «закалкой», когда фотовозбуждённое состояние деактивируется химическим реагентом.
Фотовозбуждение — это механизм возбуждения электронов путём поглощения фотона, при котором энергия фотона значительно ниже порога фотоионизации. Поглощение фотона происходит в соответствии с квантовой теорией Планка.
Фотовозбуждение играет главенствующую роль в процессе фотоизомеризации; кроме того, используется в цветосенсибилизированныхсолнечных батареях, фотохимии, люминисценции, лазерах с оптической накачкой и других фотохромных приложениях.
Рекомбинация — процесс, обратный ионизации. Состоит в захвате ионом свободного электрона. Рекомбинация приводит к уменьшению заряда иона или к превращению иона в нейтральный атом или молекулу. Возможна также рекомбинация электрона и нейтрального атома (молекулы), приводящая к образованию отрицательного иона, и в более редких случаях — рекомбинация отрицательного иона с образованием двух- или трехкратно заряженного отрицательного иона. Вместо электрона в некоторых случаях могут выступать другие элементарные частицы, напримермезоны, создавая мезоатомы или мезомолекулы. На ранних этапах развития вселенной происходила реакция рекомбинации водорода.
Рекомбинация - это процесс, обратный разрыву химической связи. Рекомбинация связана с образованием ординарной ковалентной связи за счёт обобществления неспаренных электронов, принадлежащих разным частицам (атомам, свободным радикалам)
Примеры рекомбинации:
H + H → H2 + Q ;
Cl + Cl → Cl2 + Q ;
CH3• + CH3• → C2H6 + Q и др.
Реакция рекомбинации сильно экзотермична, для неё характерна очень малая или нулевая энергия активации.
Вопрос 6. Современные представления о магнитосфере.
Магнитосфера — это область пространства вокруг небесного тела, в которой поведение окружающей тело плазмы определяется магнитным полем этого тела.
Форма и размеры магнитосферы определяются силой внутреннего магнитного поля этого небесного тела и давлением окружающей плазмы (солнечного ветра).
С наличием магнитосферы связаны многие проявления Космической погоды, такие как геомагнитная активность, геомагнитная буря и суббуря.
Магнитосфера Земли представляет собой сложный физический объект, формирующийся в результате взаимодействия собственного магнитного поля Земли, межпланетного магнитного поля и сверхзвукового потока солнечного ветра. Кроме того, внутри магнитосферы существуют потоки заряженных частиц, в свою очередь генерирующих магнитные поля.
Магнитосфера обеспечивает защиту, без которой жизнь на Земле была бы невозможна.
Общие сведения
Форму, структуру и размеры магнитосферы Земли определяют два главных фактора:
Магнитное поле Земли — в первом приближении может быть аппроксимировано полем магнитного стержня, магнитного диполя, наклоненного примерно на 11° по отношению к оси вращения Земли, хотя существуют и гармоники более высокого порядка, как впервые указал Карл Фридрих Гаусс. Величина дипольного поля Земли 0.3-0.6 Гаусса на земной поверхности, и эта величина убывает обратно пропорционально кубу расстояния, то есть на расстоянии R от Земли оно составляет только 1/R³ от магнитного поля на поверхности. Гармоники магнитного поля более высокого порядка убывают ещё быстрее, таким образом с расстоянием магнитное поле диполя становится преобладающим в магнитосфере Земли.
Солнечный ветер — представляет собой быстрый поток горячей плазмы, уходящей от Солнца во всех направлениях. Типичная скорость солнечного ветра на границе земной магнитосферы 300—800 км/с. Солнечный ветер состоит из протонов, альфа-частиц и электронов, так что в целом он квази-нейтрален. Солнечный ветер пронизан межпланетным магнитным полем, которое представляет собой главным образом магнитное поле Солнца, переносимое плазмой солнечного ветра на дальние расстояния.