
- •Принятие решений в условиях неопределенности
- •Этапы развития риск-менеджмента
- •Риск и возможности
- •Риск и цели
- •Риск и свобода
- •Риск и неопределенность
- •Риск и затраты
- •Принятие решений
- •Риск и вероятность
- •Принципы управления риском
- •Идентификация рисков
- •Виды рисков
- •Факторы, характеризующие риск
- •Оценка риска
- •Меры без учета вероятностей
- •Меры с учетом вероятностей
- •Стратегия управления риском
- •Страхование
- •Диверсификация
- •Согласование активов и пассивов
- •Хеджирование
- •Чувствительность к изменению ставок процента
- •Оценка чувствительности
- •Формулы дюрации (Duration)
- •Дюрация долларовая
- •Дюрация модифицированная
- •Пример 2. Процентное изменение цены облигации с использованием модифицированной дюрации
- •Дюрация Маколи (Macaulay)
- •Пример 4. Дюрация Маколи
- •Формулы выпуклости (Convexity)
- •Пример 5. Изменение цены облигации с использованием дюрации и выпуклости
- •Мэтчинг дюраций
- •Хеджирование
- •Фьючерсы
- •Ценообразование фьючерсных контрактов
- •Деривативы на Price-Discovery Markets (ценораскрывающий рынок)
- •Деривативы на рынке «плати и забирай».
- •Конверсионные уравнения (b,s,f)-рынка
- •Состав справедливой цены
- •Форвардный кэш и форвардный кредит
- •Ценообразование активов при форвардом кэше
- •Фьючерсы на акции
- •Фьючерсы на акции без дивидендов
- •Фьючерсы на акции с дивидендами
- •Фьючерсная цена на акции с известными дивидендами
- •Фьючерсная цена на акции с постоянной дивидендной доходностью
- •Индексные фьючерсы
- •Индексы и особенности их расчета
- •Стоимость индексного фьючерса
- •Справедливая цена индексного фьючерса
- •Коэффициент хеджирования
- •Товарные фьючерсы
- •Фьючерсы на инвестиционные товары
- •Фьючерсы на не инвестиционные товары
- •Валютные фьючерсы
- •Фьючерсы на облигации
- •Справедливая цена облигации
- •Переводной множитель
- •Арбитражные стратегии
- •Самая дешевая для поставки облигация
- •Обусловленная ставка repo
- •Опционы продавца
- •Базисное хеджирование фьючерсами на облигации
Пример 5. Изменение цены облигации с использованием дюрации и выпуклости
Используя долларовую дюрацию, мы получили, что при росте ставки процента с 5% до 6% цена облигации может измениться на dB= δ$∙dr=-4927∙0.01=-49.27$, тогда как в действительности она изменилась бы на dB=-47.98$. Теперь рассчитаем все то же самое, только с поправкой на выпуклость: γ$=26551.535
Эта цифра уже более близка к реальности. Используем модифицированную дюрацию и обычную выпуклость:
Напомним, что реальное изменение цены составило 3,89%, а при использовании модифицированной дюрации мы получали 4.05%. |
Мэтчинг дюраций
Мэтчинг дюраций (Duration matching) – метод формирования портфеля, обладающего одинаковой чувствительностью к изменениям ставок процента с целевым портфелем.
Концепцию иммунизации активов и пассивов ввел британский актуарий Frank M. Redington в 1952г. в работе "Review of the Principles of Life-Office Valuations," опубликованной в Journal of the Institute of Actuaries
Дюрация – это первая производная цены облигации по ставке процента. Поэтому изменение цены облигации представляет собой линейную функцию. Как и всякая линейная функция дюрация обладает свойством аддитивности, что позволяет с ее помощью формировать облигационные портфели, обладающие нужной чувствительностью к ценовому риску.
Более того, если мы вкладываем одинаковые средства в разные портфели облигаций, обладающие одинаковыми дюрациями, то при изменении ставок процента эти портфели будут меняться одинаково.
Предположим, мы купили облигации в количестве Q по цене B. Общий объем инвестиций V=Q∙B. При изменении доходности будет меняться цена облигации, а, следовательно, и стоимость инвестиции. Это изменение можно выразить следующим образом:
P/L = dV = Q∙dB = -Q∙δ$∙dr = -Q∙δ∙B∙dr
Для того чтобы P/L двух портфелей был одинаковым необходимо, чтобы совпадали их дюрации.
Эту идею активно используют менеджеры для управления ценовыми рисками:
Подгонка активов и пассивов финансовых институтов так, чтобы совпадали их дюрации, лежит в основе так называемого ALM.
Составление портфеля облигаций в соответствии с дюрацией облигационного индекса, лежит в основе такой политики управления рисками, как хеджирование.
Однако нужно учитывать, что подобная политика хороша при малых изменениях доходности, поскольку выпуклость здесь не учитывается.
Для привлечения инвесторов с разной склонностью к риску, облигационные фонды часто разбивают свои портфели. Например, один фонд инвестирует в долгосрочные облигации с 10-летней дюрацией, другой – в среднесрочные ценные бумаги с 5-летней дюрацией, а третий – краткосрочные облигации с дюраций равной 2. При одинаковом изменении ставок процента активы фондов будут меняться по-разному.
Хеджирование
В случае диверсификации для снижения риска инвестор подбирает набор активов, которые не имеют тесной корреляции доходностей. В результате этого риск портфеля оказывается ниже риска активов, которые составляют портфель, если их рассматривать по отдельности. Заметим, что если бы удалось подобрать два актива, которые обладают идеальной корреляцией (положительной или отрицательной), тогда из рискованных активов можно было бы составить совершенно безрисковый портфель. Эта идея и лежит в основе такой техники избавления инвестора от риска, как хеджирование.
Для хеджирования используются производные инструменты, такие как фьючерсы, опционы и свопы.