Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
informatika_1_2.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
116.88 Кб
Скачать

Вопросы по ИТ в ЮД

1.Единицы представления, измерения и хранения информации. Системы счисления. Перевод чисел из одной системы счисления в другую.

  • Наименьшая единица представления информации – бит

Бит - бинери(2-ое число)

Байт – группа из 8 бит

Байт может содержать 256 различных комбинаций битов и соответственно с помощью байта можно выразить 256 различных значений

Байт – наименьшая единица обработки и передачи информации.

Байты информации записывают в виде файлов Файл – наименьшая единица хранения информации

Более крупными единицами являются следующие:

1кб = 2(10) байт = 1024 байт 1мб = 2(10)кб = 104857 байт 1Гб = 2(10)Мб  1Тб = 2(10)Гб 1P = 2(10) Тб 1Е = 2(10)Р

  • Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.

Системы счисления подразделяются на позиционныенепозиционные и смешанные.

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Наиболее употребляемыми в настоящее время позиционными системами являются:

  • 2 — двоичная (в дискретной математикеинформатикепрограммировании);

  • 3 — троичная;

  • 8 — восьмеричная;

  • 10 — десятичная (используется повсеместно);

  • 12 — двенадцатеричная (счёт дюжинами);

  • 13 — тринадцатеричная;

  • 16 — шестнадцатеричная (используется в программированииинформатике);

  • 60 — шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Смешанная система счисления является обобщением  -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел  , и каждое число   в ней представляется как линейная комбинация. В зависимости от вида   как функции от   смешанные системы счисления могут быть степеннымипоказательными и т. п. Когда   для некоторого  , смешанная система счисления совпадает с показательной  -ричной системой счисления.

  • Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

4. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

5. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

6. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифрпоследнего результата деления и остатков от деления в обратном порядке.

7. Перевод правильных дробей из десятичной системы счисления в недесятичную.  Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

8. Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

9. Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом или четырехразрядным двоичным числом, при этом отбрасывают ненужные нули в старших и младших разрядах.

10. Перевод правильных дробей из десятичной системы счисления в недесятичную.  Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

11. Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

12. Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) (Таб. 1) или четырехразрядным двоичным числом (тетрадой) (Таб. 1), при этом отбрасывают ненужные нули в старших и младших разрядах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]