Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции матзадачи.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
7.47 Mб
Скачать

Понятия устойчивости, корректности постановки задач и сходимости численного решения

Важнейшим моментом при математическом моделировании является обеспечение достоверности полученных решений. Но из практики известно, что лишь в редких случаях удается найти метод решения, приводящий к точному результату. Как правило, приближенные решения используются совместно с точными решениями, поэтому, наряду с выбором вычислительного метода, с точки зрения оптимальности алгоритма его реализации, важной задачей является оценка степени точности получаемого решения. Ее принято оценивать некоторой численной величиной, называемой погрешностью.

При решении любой практической задачи необходимо всегда указывать требуемую точность результата. В связи с этим необходимо уметь:

1) зная заданную точность исходных данных, оценивать точность результата (прямая задача теории погрешностей);

2) зная требуемую точность результата, выбирать необходимую точность исходных данных (обратная задача теории погрешностей).

Пусть в результате решения задачи по исходному значению величины х находится значение искомой величины у. Если исходная величина имеет абсолютную погрешность х, то решение у имеет погрешность у.

Задача называется устойчивой по исходному параметру х, если решение у непрерывно зависит от х, т.е. малое приращение исходной величины х приводит к малому приращению искомой величины у. Другими словами, малые погрешности в исходной величине приводят к малым погрешностям в результате расчетов.

Отсутствие устойчивости означает, что даже незначительные погрешности в исходных данных приводят к большим погрешностям в решении или вовсе к неверному результату.

Задача называется поставленной корректно, если для любых значений исходных данных из некоторого класса ее решение существует, единственно и устойчиво по исходным данным.

Понятие сходимости численного решения вводится для итерационных процессов. По результатам многократного повторения итерационного процесса получаем последовательность приближенных значений . Говорят, что эта последовательность сходится к точному решению, если .

Таким образом, для получения решения задачи с необходимой точностью ее постановка должна быть корректной, а используемый численный метод должен обладать устойчивостью и сходимостью. Эти понятия будут рассматриваться в последующих разделах курса. Пример алгоритмической неустойчивости – вычисление производных численными методами: какой бы метод мы не использовали, приходится вычитать весьма мало различающиеся числа.

Вот иллюстрация этих определений. Пусть имеется реальный маятник, совершающий затухающие колебания, начинающий движение в момент t = t0. Требуется найти угол отклонения φ от вертикали в момент t1. Движение маятника мы можем описать следующим дифференциальным уравнением:

,

где l – длина маятника, g – ускорение силы тяжести, μ – коэффициент трения.

Как только принимается такое описание задачи, решение уже приобретает неустранимую погрешность, в частности потому, что реальное трение зависит от скорости не совсем линейно (погрешность модели). Кроме того, воспроизведя реальный эксперимент, мы зададим l, g (в известной точке планеты), μ с некоторой точностью, и получим набор значений с погрешностью, которую можем оценить из анализа статистики некоторого числа однотипных опытов (погрешность исходных данных). Взятое в модели дифференциальное уравнение нельзя решить в явном виде, для его решения требуется применить какой-либо численный метод, имеющий заранее известную погрешность, которая должна быть меньше неустранимой погрешности. После совершения вычислений мы получим значения с погрешностью большей, нежели погрешность метода, так как к ней прибавится погрешность округления.