- •1 Природные ресурсы. Классификации.
- •2 Антропогенный, техносферный и ноосферный этапы в освоении природных ресурсов
- •3 Мин.Ресурсы. Их пространственная диверсификация
- •4 Земельные ресурсы России. Структура земельного фонда рф
- •6 Основные элементы климатических ресурсов. Особенности их дифференциации
- •7 Основные свойства почв. Пространственная дифференциация почв
- •8 Ресурсы растительного и животного мира
- •10 Лесохозяйственное природопользование
- •11 Морское и пресноводное рыболовство и проблемы природопользования в данной сфере. Воспроизводств биотических ресурсов водных геосистем.
- •12 Использование биотических ресурсов наземных геосистем в охотничьем хозяйстве . Промысловая и любительская охота.
- •13 Селитебное землепользование. Виды, структура и пространственная дифференциация селитебных геосистем. Функциональное зонирование нас.Пунктов.
- •14 Основные виды рекреационной деятельности и их пространственная дифференциация
- •15 Природоохранное землепользование. Оопт. Сеть и система оопт
- •16 Проблема использоваия мин.Ресурсов. Сокращение запасов мин.Ресурсов. Загрязнение пр.Геосистем и их компонентов при добыче транспортировке.
- •18 Проблемы утилизации бытовых и промышленных отходов.
- •19 Сохранение биологического и ландшафтного разнообразия. Снижение техногенного давления на оопт
- •20 Снижение плодородия почв и меры по его восстановлению. Рекультивация земель.
- •Первичные
- •22 Виды антропогенных ландшафтов
- •24 Создание условий для перехода к ноосферному этапу использования пр.Ресурсов
- •25 Красная книга и её значение
- •26 Возобновляемые источники энергии
- •27 Достоинства и проблемы использования энергии Солнца
- •28 Основные лесообразующие породы России и их пространственная дифференциация.
- •29 Проблемы эксплуатации транспорта и инфраструктуры
- •30 Роль международных организаций в охране природы
- •33 Антропогенный фактор в глобальных круговоротах вещества и энергии
- •34 Принципы рационального природопользования
- •36 Государственные и муниципальные органы управления природными ресурсами и объектами
26 Возобновляемые источники энергии
Возобновляемая или регенеративная энергия ("Зеленая энергия") — энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения.
Возобновляемую энергию получают из природных ресурсов — таких как солнечный свет, ветер, дождь, приливы и геотермальная теплота — которые являются возобновляемыми (пополняются естественным путем). В 2006 году около 18 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии, причем 13 % из традиционной биомассы, таких, как сжигание древесины.Гидроэлектроэнергия является очередным крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. В 2010 году 16,7% мирового потребления энергии поступало из возобновляемых источников. Доля возобновляемой энергии уменьшается, но это происходит за счёт сокращения доли традиционной биомассы, которая составила всего 8,5% в 2010 году. Доля современной возобновляемой энергии растёт и в 2010 году составила 8,2%, в том числе гидроэнергия 3,3%, для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%. Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 196600 мегаватт (МВт) в 2010 году, и широко используется в странах Европы и США. Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году. Солнечные электростанции популярны в Германии и Испании. Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт. Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе. Топливный этанол также широко распространен в США.
27 Достоинства и проблемы использования энергии Солнца
Солнечная энергетика - отрасль хозяйства, связанная с использованием солнечного излучения для получения энергии. Солнечная энергетика использует неисчерпаемый источник энергии, не вызывает вредных отходов и является экологически чистой.
Солнечная энергетика основывается на том, что поток солнечного излучения, проходящего через участок площадью 1 м.кв., расположенный перпендикулярно потоку излучения на расстоянии одной астрономической единицы от Солнца (на входе в атмосферу Земли), равен 1367 Вт/м.кв. (cолнечная постоянная). Через поглощение, при прохождении атмосферы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) - 1020 Вт/м.кв. Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичный горизонтальный участок как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение еще в два раза меньше.
Известны следующие способы получения энергии за счет солнечного излучения: 1. Получение электроэнергии с помощью фотоэлементов.
Преобразование солнечной энергии в электрическую с помощью тепловых машин: а) паровые машины (поршневые или турбинные), использующих водяной пар, углекислый газ, пропан-бутан, фреоны;
б) двигатель Стирлинга и т.д.
3. Гелиотермальная энергетика - преобразование солнечной энергии в тепловую за счет нагрева поверхности, поглощающей солнечные лучи.
4. Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием).
Недостатки солнечной энергетики
Для строительства солнечных электростанций требуются большие площади земли через теоретические ограничения для фотоэлементов первого и второго поколения. К примеру, для электростанции мощностью 1 ГВт может понадобиться участок площадью несколько десятков квадратных километров. Строительство солнечных электростанций такой мощности может привести к изменению микроклимата в прилегающей местности, поэтому устанавливают в основном фотоэлектрические станции мощностью 1-2 МВт недалеко от потребителя или даже индивидуальные и мобильные установки.
Фотоэлектрические преобразователи работают днем, а также в утренних и вечерних сумерках (с меньшей эффективностью). При этом пик электропотребления приходится именно на вечерние часы. Кроме этого, произведенная ими электроэнергия может резко и неожиданно колебаться из-за изменений погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы. На сегодняшний день эта проблема решается созданием единых энергетических систем, объединяющих различные источники энергии, которые перераспределяют производимую и потребляемую мощность.
Сегодня цена солнечных фотоэлементов сравнительно высокая, но с развитием технологии и ростом цен на ископаемые энергоносители этот недостаток постепенно преодолевается.
Поверхность фотопанелей и зеркал (для тепломашинных ЭС) очищают от пыли и других загрязнений.
Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. В фотоэлектрических преобразователях третьего и четвертого поколений для охлаждения используют преобразования теплового излучения в излучение наиболее согласовано с поглощающим материалом фотоэлектрического элемента (т.н. up-conversion), что одновременно повышает КПД.
Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработав свое, фотоэлементы, хотя и незначительная их часть, содержат кадмий, который нельзя выбрасывать на свалку. Нужно дополнительно расширять индустрию по их утилизации.
