- •Статистический метод в физике
- •Термодинамический метод в физике
- •Термодинамическая характеристика состояния тел и термодинамические процессы
- •Основные уравнения модели идеального газа
- •Основное уравнение молекулярно-кинетической теории идеальных газов
- •Закон Маквелла о распределении молекул идеального газа по скоростям и энергиям теплового движения
- •Барометрическая формула. Распределение Больцмана
- •Среднее число столкновений и средняя длина свободного пробега молекул
- •Опытное обоснование молекулярно-кинетической теории
- •Явления переноса в термодинамически неравновесных системах
- •Вакуум и методы его получения. Свойства ультраразреженных газов
- •Закон равномерного распределения энергии по степеням свободы молекул
- •Первое начало термодинамики
- •Работа газа при изменении его объема
- •Теплоемкость. Уравнение Майера
- •Адиабатический процесс. Политропный процесс
- •Круговой процесс (цикл). Обратимые и необратимые процессы
- •Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •Второе начало термодинамик
- •Цикл Карно
- •Реальные газы, жидкости и твердые тела
- •Уравнение Ван-дер-Ваальса
- •Изотермы Ван-дер-Ваальса и их анализ
- •Внутренняя энергия реального газа
- •Эффект Джоуля — Томсона
- •Сжижение газов
- •Свойства жидкостей. Поверхностное натяжение
- •Смачивание
- •Капиллярные явления
- •Твердые тела. Моно- и поликристаллы
- •§ 31. Типы кристаллических твердых тел
- •§ 32. Дефекты в кристаллах
- •§ 33. Теплоемкость твердых тел
- •§ 34. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- •§ 35. Фазовые переходы I и п рода
- •§ 36. Диаграмма состояния. Тройная точка
- •§ 37 Понятие о зонной теории твердых тел
- •§ 38. Металлы, диэлектрики и полупроводники по зонной теории
- •§ 39 Собственная проводимость полупроводников
- •§ 40. Примесная проводимость полупроводников
- •§ 41. Фотопроводимость полупроводников
- •§ 42. Люминесценция твердых тел
- •§ 43. Контакт двух металлов по зонной теории
- •§ 44. Термоэлектрические явления и их применение
- •§ 45. Выпрямление на контакте металл — полупроводник
- •§ 46. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •§ 47. Дефект массы и энергия связи ядра
- •§ 48. Спин ядра и его магнитный момент
- •§ 49 Ядерные силы. Модели ядра
- •§ 50. Радиоактивное излучение и его виды
- •§ 51. Закон радиоактивного распада. Правила смещения
- •§ 52. Закономерности -распада
- •§ 54. Гамма-излучение и его свойства
- •§ 55. Резонансное поглощение -излучения (эффект Мёссбауэра*)
- •§ 56. Методы наблюдения и регистрации радиоактивных излучений и частиц
- •§ 57. Ядерные реакции и их основные типы
- •§ 59. Открытие нейтрона. Ядерные реакции под действием нейтронов
- •§ 60. Реакция деления ядра
- •§ 61. Цепная реакция деления
- •§ 62. Понятие о ядерной энергетике
- •§ 63. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •§ 64. Космическое излучение
- •§ 65. Мюоны и их свойства
- •§ 66. Мезоны и их свойства
- •§ 67. Типы взаимодействий элементарных частиц
- •§ 68. Частицы и античастицы
- •§ 69. Гипероны. Странность и четность элементарных частиц
- •§ 70. Классификация элементарных частиц. Кварки
§ 64. Космическое излучение
Развитие физики элементарных частиц тесно связано с изучением космического излучения — излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности космического излучения, проводимые методами, аналогичными методам регистрации радиоактивных излучений и частиц (см. § 261), приводят к выводу, что его интенсивность быстро растет с высотой, достигает максимума, затем уменьшается и с h 50 км остается практически постоянной (рис. 347).
Различают первичное и вторичное космические излучения. Излучение, приходящее непосредственно из космоса, называют первичным космическим излучением. Исследование его состава показало, что первичное излучение представляет собой поток элементарных частиц высокой энергии, причем более 90% из них составляют протоны с энергией примерно 109—1013 эВ, около 7%—-частицы и лишь небольшая доля (около 1%) приходится на ядра более тяжелых элементов (Z>20). По современным представлениям, основанным на данных астрофизики и радиоастрономии, считается, что первичное космическое излучение имеет в основном галактическое происхождение. Считается, что ускорение частиц до столь высоких энергий может происходить при столкновении с движущимися межзвездными магнитными полями. При h50 км (рис. 347) интенсивность космического излучения постоянна; на этих высотах наблюдается лишь первичное излучение.
С приближением к Земле интенсивность космического излучения возрастает, что свидетельствует о появлении вторичного космического излучения, которое образуется в результате взаимодействия первичного космического излучения с ядрами атомов земной атмосферы. Во вторичном космическом излучении встречаются практически все известные элементарные частицы. При h<20 км космическое излучение является вторичным; с уменьшением h его интенсивность понижается, поскольку вторичные частицы по мере продвижения к поверхности Земли испытывают поглощение.
В составе вторичного космического излучения можно выделить два компонента: мягкий (сильно поглощается свинцом) и жесткий (обладает в свинце большой проникающей способностью). Происхождение мягкого компонента объясняется следующим образом. В космическом пространстве всегда имеются -кванты с энергией Е>2тeс2, которые в поле атомных ядер превращаются в электронно-позитронные пары (см. § 263). Образовавшиеся таким образом электроны и позитроны, тормозясь, в свою очередь, создают -кванты, энергия которых еще достаточна для образования новых электронно-позитронных пар и т. д. до тех пор, пока энергия -квантов не будет меньше 2тeс2 (рис. 348). Описанный процесс называется электронно-позитронно-фотонным (или каскадным) ливнем. Хотя первичные частицы, приводящие к образованию этих ливней, и обладают огромными энергиями, но ливневые частицы являются «мягкими» — не проходят через большие толщи вещества. Таким образом, ливневые частицы — электроны, позитроны и -кванты — и представляют собой мягкий компонент вторичного космического излучения. Природа жесткого компонента будет рассмотрена в дальнейшем (см. § 270).
Исследование космического излучения, с одной стороны, позволило на начальном этапе развития физики элементарных частиц получить основные экспериментальные данные, на которых базировалась эта область науки, а с другой — дало возможность и сейчас изучать процессы с частицами сверхвысоких энергий вплоть до 1021 эВ, которые еще не получены искусственным путем. С начала 50-х годов для исследования элементарных частиц стали применять ускорители (позволяют ускорить частицы до сотен гигаэлектрон-вольт; см. § 116), в связи с чем космическое излучение утратило свою исключительность при их изучении, оставаясь лишь основным «источником» частиц в области сверхвысоких энергий.
