
- •Валы и оси, их роль в машинах
- •Виды повреждения подшипников качения.
- •Виды взаимного расположения валов
- •Виды червяков. Стандартные параметры чп.
- •Выбор подшипников качения по динамической грузоподъемности
- •Геометрические параметры зубчатых передач. Понятие контактных напряжений. Расчет контактных напряжений зубчатых передач.
- •Глухие муфты, их конструкция и расчет (втулочная муфта).
- •Глухие муфты, их конструкция и расчет (фланцевая муфта).
- •Двухкомпонентные вероятностные расчеты детали машин.
- •Дополнительные нагрузки на валы создаваемые муфтами
- •Допускаемые напряжения в ремне. Геометрические параметры ременной передачи. Конструкции ремней и шкивов.
- •Жесткие компенсирующие муфты, их к онструкция и расчет.
- •Жесткость. Уточненные модели и расчеты деталей машин.
- •Заклепочные соединения. Типы. Расчет на прочность. Конструкция, технология, классификация, технология, классификация, области применения.
- •Зубчато-ременные передачи. Расчет на тяговую способность.
- •Классификация муфт.
- •Классификация подшипников качения.
- •Клеммовые соединения. Конструкция и применения. Расчет на прочность(2 крайних случая).
- •Компенсирующая и демпфирующая способность муфт
- •К онические зубчатые передачи, их классификация, область применения. Геометрические и эксплуатационные особенности. Специфика расчета.
- •Конструирование валов и осей.
- •Конструктивные и технологические способы повышения износостойкости сопряжений.
- •Конструктивные и технологические способы повышения прочности деталей машин
- •Конструктивные разновидности валов и осей.
- •Конструкция и расчет на прочность сварных стыковых соединений
- •Конструкция и расчет упругих муфт(мувп).
- •Конструкция и расчет упругих муфт(с упругой торообразной оболочкой)
- •Косозубые зубчатые передачи. Коэффициент торцевого перекрытия. Проектный расчет косозубых передач по контактным напряжениям по гост 21354 — 75.
- •Кпд червячных передач и его расчет. Способы повышения кпд червячных передач
- •Кривые скольжения и кпд ременных передач.
- •Критерии работоспособности дм и методы их оценки.
- •Критерии работоспособности зубчатых передач. Контроль качества изготовления зубчатых колес.
- •Критерии работоспособности и расчет ременных передач.
- •Критерии работоспособности и расчета передач зацепления новикова. Способы повышения прочности, материалы. Расчет на прочность.
- •Критерии работоспособности подшипников качения.
- •«Курс дм». Основные термины и определения.
- •Линейный корреляционный анализ при малом числе испытаний.
- •Материалы заклепок и допускаемые напряжения. Условные обозначения заклепок.
- •Материалы и термообработка зубчатых передач. Основные виды повреждения зубьев.
- •Материалы резьбовых соединений и допускаемые напряжения.
- •Материалы червячных колес. Критерии работоспособности и виды отказов. Расчет допускаемых напряжений для материалов чп.
- •Механический привод и основные типы механических передач. Зубчатые передачи.
- •Многокомпонентные вероятностные расчеты дм.
- •Модели нагружения дм. Модели разрушения дм.
- •Муфты и их роль в машиностроении.
- •Надежность деталей и узлов машин. Основные пути повышения надежности.
- •Нахлестные сварные соединения.
- •Нахлестные соединения. Особенности расчета при сложном виде нагружения. Тавровое соединение.
- •Общие вопросы проектирования деталей и узлов машин.
- •Общие понятия об самоуправляемых муфтах.
- •Общие понятия об управляемых муфтах.
- •Однокомпонентные вероятностные расчеты дм.
- •Определение расчетной нагрузки в зубчатых передачах. Коэффициенты концентрации нагрузки и динамической нагрузки и их определение.
- •Определение эквивалентной нагрузки для роликовых подшипников. Радиальные и радиально-упорные
- •Определение эквивалентной нагрузки для шариковых подшипников.
- •Определение коэффициента нагрузки в червячных передачах. Расчет червячных передач на выносливость.
- •Основные конструкции роликовых подшипников.
- •Основные типы крепежных деталей
- •Основы триботехники.
- •Особенности расчета планетарных передач. Кинематика планетарных передач.
- •Передачи с зацеплением новикова м.Л.
- •Подбор пружин
- •Подшипники качения, их характеристика. Область применения.
- •Подшипники скольжения. Виды, устройство, основные требования к конструкциям, особенности эксплуатации
- •Понятие эргономичности.
- •Материалы и термообработка валов и осей
- •Принципы, стадии и формы организации проектирования деталей и узлов машин.
- •Проверочный расчет косозубой передачи на контактную прочность.
- •Проектный расчет на изгиб косозубых зубчатых передач (открытых).
- •Прочность болта при статических нагрузках.
- •Прочность сварных соединений и допускаемые напряжения .
- •Пружины. Назначение, виды, конструкции, материалы.
- •Распределение осевой нагрузки винта по виткам резьбы.
- •Расчет валов и осей на прочность
- •Расчет валов на колебания
- •Расчет валов на усталостную прочность
- •Расчет допускаемых напряжений для валов и осей
- •Расчет допускаемых напряжений для материалов зубчатых передач.
- •Расчет прочности зубьев по напряжениям изгиба.
- •Расчет нà надежность сборочных единиц
- •Расчет прочности конических колес с не прямыми зубьями
- •Расчет на прочность стержня винта (болта) при различных случаях нагружения
- •Расчет открытых червячных передач.
- •Упрощенный (условный) расчет подшипников скольжения
- •Расчет резьбы на прочность
- •Расчет соединений, включающих группу болтов
- •Расчет червячных передач на нагрев.
- •Расчет червячных передач на сопротивление усталости по изгибу.
- •Расчет деталей машин на надежность
- •Расчет деталей машин при переменных режимах нагружений
- •Расчеты роликовых цепей.
- •Резьбовые соединения. Метод изготовления геометр. Параметры. Основные типы резьбы.
- •Ременные передачи
- •Самоторможение и к. П. Д. Винтовой пары.
- •Силы, действующие в зубчатых передачах и их расчет
- •Напряжения в ремне передачи.
- •Соединение контактной сваркой.
- •Соединения с натягом
- •Соединение посадкой на конус
- •Соединения
- •Теория винтовой пары
- •Торцовые шариковые редукторы.
- •Тяговая способность ременной передачи.
- •Муфты упругие
- •Вариаторы
- •Расчет фрикционных тел на контактную прочность и кпд передач
- •Цепные передачи
- •Червячные передачи, их характеристика, область применения.
- •Шлицевые соединения.
- •Шпоночные соединения
Классификация подшипников качения.
Подшипники качения классифицируются по следующим знакам: по форме тел качения; по направлению нагрузки, для восприятия которой предназначен подшипник; по числу рядов качения в одном подшипнике; по конструктивным особенностям подшипника.
По форме тел качения подшипники разделяют на шариковые и роликовые. Ролики имеют различную форму: конические цилиндрические, длинные цилиндрические, иглы (тонкие ролики); витые; конические; сферические (симметричные, асимметричные).
По направлению нагрузки, которую воспринимать подшипники качения, они подразделяются на радиальные, радиально-упорные, упорные. Иногда в отдельную группу выделяют упорно-радиальные подшипники, которые предназначены для восприятия осевых и одновременно небольших радиан нагрузок.
По числу рядов тел качения различают подшипники однорядные, двухрядные, трехрядные, четырехрядные и многорядные.
По способности компенсировать перекосы валов подшипники подразделяются на самоустанавливающиеся и несамоустанавливающиеся.
Основные типы подшипников качения стандартизованы, т. е. унифицированы их типоразмеры. Их производство сосредоточено на специализированных заводах, а мировой выпуск измеряется миллиардами штук в год. Кроме того, благодаря унификации методов расчета чрезвычайно упрощен их выбор.
Подшипники качения обладают следующими достоинствами: меньшие моменты трения, пусковые моменты и тепловыделение; простота обслуживания; меньший расход дефицитных и смазочных материалов; большая их несущая способность на единицу ширины подшипника; совершенная стандартизация и унификация. Их недостатки: меньшая скорость вращения; шумность в работе при больших скоростях; большие габариты по диаметру; небольшая долговечность при больших скоростях; жесткость.
Основные материалы для колец и тел качения - шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ (число указывает среднее содержание хрома в десятых долях процента при этом углерода содержится в среднем 1,0...1,1%). В стали Х15СГ содержится также кремний и марганец. Применяют и патентуемые легированные стали 18ХГТ и 20Х2Н4А. Твердость колец и роликов 60...65 HRCэ, шариков - 62...66 НRСЭ.
Сепараторы изготавливают в основном из мягкой углеродистой или (штамповкой), для высокоскоростных подшипников - из антифрикционных бронз, текстолита, металлокерамики, полиамид B, дюралюминия и др.
Для смягчения ударов и уменьшения шума применяют тела нения из пластмасс, при этом кольца можно делать из мягких сплавов.
Выпускают подшипники качения 5 классов точности: 0, 6, 5, 4, 2 в порядке повышения точности). Для большинства узлов применяют подшипники класса точности 0 (нормального). Подшипники более высоких классов точности используют в узлах с большими скоростями, а также требующих высокой точности вращения. Повышение класса
Клеммовые соединения. Конструкция и применения. Расчет на прочность(2 крайних случая).
Клеммовые соединения. Конструкция и применение
Клеммовые соединения применяют для закрепления деталей на валах и осях, цилиндрических колоннах, кронштейнах и т.д.
По конструктивным признакам различают два основных типа клеммовых соединений: а) со ступицей, имеющей прорезь; б) с разъемной ступицей. Разъемная ступица несколько увеличивает массу и стоимость соединения, но при этом становится возможным устанавливать клемму в любой части вала независимо oт формы соседних участков и других расположенных на валу деталей
При соединении деталей с помощью клемм используют силы трения, которые возникают от затяжки болтов. Эти силы трения позволяют нагружать соединение как моментом (T=FI), так и осевой силой Fо. Ранее отмечалось, что передача нагрузки только силам) трения недостаточно надежна. Поэтому не рекомендуют применят клеммовые соединения для передачи больших нагрузок.
К
достоинствам клеммового соединения
относятся простота монтажа и демонтажа,
самопредохранение от перегрузки, а
также возможность перестановки и
регулировки взаимного расположения
деталей как в осевом, так и в окружном
направлениях (регулировка Положения
рычагов и тяг в механизмах управления
и т. п.).
Расчет на прочность
В зависимости от выполнения соединения при расчете можно рассмотреть два предельных случая (рис. 1).
1. со ступицей, имеющей прорезь,
2. с разъемной ступицей.
Первый случай. Клемма обладает большой жесткостью, а посадка деталей выполнена с большим зазором (При этом можно допустить, что контакт деталей происходит по линии, а условие прочности соединения выражается в виде:
где
Fn
— реакция в месте контакта, f — коэффициент
трения.
По условию равновесия любой половины клеммы Fn = 2 Fзат;
Подставив значения
Fn
в формулу найдем:
Второй случай.
Клемма достаточно гибка, форма сопрягаемых
деталей строго цилиндрическая, зазор
в соединении близок к нулю. В этом случае
можно полагать, что давление р распределено
равномерно по поверхности соприкосновения
деталей, а условие прочности соединения
выражается в виде:
По аналогии, рассматривая равновесие
полуклеммы, записываем
то есть :
Таким образом, нагрузочные способности для двух предельных случаев относятся как 2/. Первый случай является самым неблагоприятным, а второй — наиболее рациональным с точки зрения требуемой затяжки болтов.
Следует заметить также, что наличие больших зазоров в соединении может привести к разрушению клеммы от напряжений изгиба. Практически конструкция с большими зазорами является дефектной.
В современном машиностроении размеры деталей клеммового соединения выполняют под посадку типа H8/h8. При такой посадке обеспечивается свободная сборка деталей без излишних зазоров.
Это дает основание рассматривать условия работы практически выполняемых клеммовых соединений как средние между двумя рассмотренными выше крайними случаями и рассчитывать их прочность по формулам
Здесь коэффициенты
2,5 и 5 приближенно равны среднему значению
коэффициентов в выше приведенных
формулах.
Расчет клеммового соединения с односторонним расположением болтов принято выполнять по тем же формулам. При этом условно полагают, что функции второго болта соединения выполняет сам материал рычага. Действительно, если верхний болт в конструкции приварить к деталям, то условия работы клеммы и нижнего болта не изменятся, а конструкция станет подобна конструкции, изображенной на рис.
Для определения
потребной силы затяжки болтов преобразуем
формулы к виду:
При совместном
действии T
и Fа
сдвигающей силой на поверхности
контакта будет равнодействующая осевой
Fа
и окружной Ft
= 2T/d
сил. Для такого случая:
При найденной Fзат
расчет болтов на прочность выполняют
по формуле:
В формулах z — число болтов, расположенных с одной стороны вала, К =(1,3...1,8) — коэффициент запаса. Коэффициент трения для чугунных и стальных деталей, работающих без смазки, можно выбирать в пределах f = 0,15...0,18.