
- •Валы и оси, их роль в машинах
- •Виды повреждения подшипников качения.
- •Виды взаимного расположения валов
- •Виды червяков. Стандартные параметры чп.
- •Выбор подшипников качения по динамической грузоподъемности
- •Геометрические параметры зубчатых передач. Понятие контактных напряжений. Расчет контактных напряжений зубчатых передач.
- •Глухие муфты, их конструкция и расчет (втулочная муфта).
- •Глухие муфты, их конструкция и расчет (фланцевая муфта).
- •Двухкомпонентные вероятностные расчеты детали машин.
- •Дополнительные нагрузки на валы создаваемые муфтами
- •Допускаемые напряжения в ремне. Геометрические параметры ременной передачи. Конструкции ремней и шкивов.
- •Жесткие компенсирующие муфты, их к онструкция и расчет.
- •Жесткость. Уточненные модели и расчеты деталей машин.
- •Заклепочные соединения. Типы. Расчет на прочность. Конструкция, технология, классификация, технология, классификация, области применения.
- •Зубчато-ременные передачи. Расчет на тяговую способность.
- •Классификация муфт.
- •Классификация подшипников качения.
- •Клеммовые соединения. Конструкция и применения. Расчет на прочность(2 крайних случая).
- •Компенсирующая и демпфирующая способность муфт
- •К онические зубчатые передачи, их классификация, область применения. Геометрические и эксплуатационные особенности. Специфика расчета.
- •Конструирование валов и осей.
- •Конструктивные и технологические способы повышения износостойкости сопряжений.
- •Конструктивные и технологические способы повышения прочности деталей машин
- •Конструктивные разновидности валов и осей.
- •Конструкция и расчет на прочность сварных стыковых соединений
- •Конструкция и расчет упругих муфт(мувп).
- •Конструкция и расчет упругих муфт(с упругой торообразной оболочкой)
- •Косозубые зубчатые передачи. Коэффициент торцевого перекрытия. Проектный расчет косозубых передач по контактным напряжениям по гост 21354 — 75.
- •Кпд червячных передач и его расчет. Способы повышения кпд червячных передач
- •Кривые скольжения и кпд ременных передач.
- •Критерии работоспособности дм и методы их оценки.
- •Критерии работоспособности зубчатых передач. Контроль качества изготовления зубчатых колес.
- •Критерии работоспособности и расчет ременных передач.
- •Критерии работоспособности и расчета передач зацепления новикова. Способы повышения прочности, материалы. Расчет на прочность.
- •Критерии работоспособности подшипников качения.
- •«Курс дм». Основные термины и определения.
- •Линейный корреляционный анализ при малом числе испытаний.
- •Материалы заклепок и допускаемые напряжения. Условные обозначения заклепок.
- •Материалы и термообработка зубчатых передач. Основные виды повреждения зубьев.
- •Материалы резьбовых соединений и допускаемые напряжения.
- •Материалы червячных колес. Критерии работоспособности и виды отказов. Расчет допускаемых напряжений для материалов чп.
- •Механический привод и основные типы механических передач. Зубчатые передачи.
- •Многокомпонентные вероятностные расчеты дм.
- •Модели нагружения дм. Модели разрушения дм.
- •Муфты и их роль в машиностроении.
- •Надежность деталей и узлов машин. Основные пути повышения надежности.
- •Нахлестные сварные соединения.
- •Нахлестные соединения. Особенности расчета при сложном виде нагружения. Тавровое соединение.
- •Общие вопросы проектирования деталей и узлов машин.
- •Общие понятия об самоуправляемых муфтах.
- •Общие понятия об управляемых муфтах.
- •Однокомпонентные вероятностные расчеты дм.
- •Определение расчетной нагрузки в зубчатых передачах. Коэффициенты концентрации нагрузки и динамической нагрузки и их определение.
- •Определение эквивалентной нагрузки для роликовых подшипников. Радиальные и радиально-упорные
- •Определение эквивалентной нагрузки для шариковых подшипников.
- •Определение коэффициента нагрузки в червячных передачах. Расчет червячных передач на выносливость.
- •Основные конструкции роликовых подшипников.
- •Основные типы крепежных деталей
- •Основы триботехники.
- •Особенности расчета планетарных передач. Кинематика планетарных передач.
- •Передачи с зацеплением новикова м.Л.
- •Подбор пружин
- •Подшипники качения, их характеристика. Область применения.
- •Подшипники скольжения. Виды, устройство, основные требования к конструкциям, особенности эксплуатации
- •Понятие эргономичности.
- •Материалы и термообработка валов и осей
- •Принципы, стадии и формы организации проектирования деталей и узлов машин.
- •Проверочный расчет косозубой передачи на контактную прочность.
- •Проектный расчет на изгиб косозубых зубчатых передач (открытых).
- •Прочность болта при статических нагрузках.
- •Прочность сварных соединений и допускаемые напряжения .
- •Пружины. Назначение, виды, конструкции, материалы.
- •Распределение осевой нагрузки винта по виткам резьбы.
- •Расчет валов и осей на прочность
- •Расчет валов на колебания
- •Расчет валов на усталостную прочность
- •Расчет допускаемых напряжений для валов и осей
- •Расчет допускаемых напряжений для материалов зубчатых передач.
- •Расчет прочности зубьев по напряжениям изгиба.
- •Расчет нà надежность сборочных единиц
- •Расчет прочности конических колес с не прямыми зубьями
- •Расчет на прочность стержня винта (болта) при различных случаях нагружения
- •Расчет открытых червячных передач.
- •Упрощенный (условный) расчет подшипников скольжения
- •Расчет резьбы на прочность
- •Расчет соединений, включающих группу болтов
- •Расчет червячных передач на нагрев.
- •Расчет червячных передач на сопротивление усталости по изгибу.
- •Расчет деталей машин на надежность
- •Расчет деталей машин при переменных режимах нагружений
- •Расчеты роликовых цепей.
- •Резьбовые соединения. Метод изготовления геометр. Параметры. Основные типы резьбы.
- •Ременные передачи
- •Самоторможение и к. П. Д. Винтовой пары.
- •Силы, действующие в зубчатых передачах и их расчет
- •Напряжения в ремне передачи.
- •Соединение контактной сваркой.
- •Соединения с натягом
- •Соединение посадкой на конус
- •Соединения
- •Теория винтовой пары
- •Торцовые шариковые редукторы.
- •Тяговая способность ременной передачи.
- •Муфты упругие
- •Вариаторы
- •Расчет фрикционных тел на контактную прочность и кпд передач
- •Цепные передачи
- •Червячные передачи, их характеристика, область применения.
- •Шлицевые соединения.
- •Шпоночные соединения
Распределение осевой нагрузки винта по виткам резьбы.
Н
а
рис. изображена схема винтовой пары.
Осевая нагрузка винта передается через
резьбу гайке и уравновешивается реакцией
ее опоры. Каждый виток резьбы нагружается
соответственно силами F1,
F2,
....Fz
, где z
—число
витков резьбы гайки.
Сумма . В общем случае Fi не равны между собой. Задача о распределении нагрузки по виткам статически неопределима. Для ее решения уравнения равновесия дополняют уравнениями деформаций. Впервые она была решена Н. Е. Жуковским в 1902 г. Не излагая это сравнительно сложное решение, ограничиваемся качественной оценкой причин неравномерного распределения нагрузки. Так как нагрузка витков пропорциональна их прогибу или относительному перемещению соответствующих точек, то нагрузка первого витка больше второго и т. д.
График распределения нагрузки по виткам, полученный на основе решения системы уравнений для стандартной, шестивитковой гайки высотой H=0,8d, изображен на рис. 1.15, б. В дальнейшем решение Н. Е. Жуковского было подтверждено экспериментальными исследованиями на прозрачных моделях. График свидетельствует о значительной перегрузке нижних витков и нецелесообразности увеличения числа витков гайки, так как последние витки мало нагружены. По этому условию нецелесообразно применение мелких резьб (при высоте гайки H = const).
Теоретические и экспериментальные исследования позволили разработать конструкции специальных гаек выравнивающих распределение нагрузки в резьбе.
Специальные гайки особенно желательно применять для соединений, подвергающихся действию переменных нагрузок. Разрушение таких соединений носит усталостный характер и происходит в зон наибольшей концентрации напряжений у нижнего (наиболее нагруженного) витка резьбы. Опытом установлено, что применение специальны гаек позволяет повысить динамическую прочность резьбовых соединений на 20. . .30%.
Вследствие большой жесткости резьбы на фактическое распределение нагрузки существенно влияют: технологические отклонения размеров; небольшие пластические деформации перегруженных витков, допустимые для крепежных резьб; приработка ходовых резьб. Поэтому, при практических расчетах неравномерность распределения нагрузки по виткам резьбы учитывают опытным коэффициентом Кm.
РАСПРЕДЕЛЕНИЕ НАГРУЗКИ МЕЖДУ ТЕЛАМИ КАЧЕНИЯ
П
олагаем,
что зазор в подшипнике отсутствует. Из
схемы на с. 17.2 видно, что нагрузка на
тела качения распределяется неравномерно.
Ее воспринимают тела качения на дуге,
меньшей 180°. наиболее нагружен (силой
F0)
шарик или ролик, расположенный на линии
действия внешней силы Fr.
Из условия равновесия
Fr = F0+ 2F1 cos +2F2 cos 2 + …+ 2Fn cos n
.Здесь = 360 /z
z - число тел качения; n = z / 2 т. е n - половина тел качения в нагруженной зоне
Для определения силы F0 используем дополнительно уравнение перемещений. Из теории упругости известно, что при контакте шарика с дорожкой кольца существует следующая зависимость деформации i от нагрузки Fi ( i ─ номер тела качения)
где
- коэффициент пропорциональности
С другой стороны, очевидно, что деформации в местах контакта шариков и колец связаны следующей зависимостью, i = δ0 cos i
Выразим i в этой формуле через силу. Тогда получим выражение
Или
Подставим Fi в уравнение равновесия:
Отсюда
где
Для шарикоподшипников с z = 10 … 20; k = 4,37 0,01. С учетом зазоров для однорядных шарикоподшипников нагрузка на наиболее нагруженный шарик больше, чем по этому расчету, примерно на 10%. Поэтому k = 5 и F0 = 5Fr/z. Для сферических двухрядных шарикоподшипников F0 = 6Fr/(z.cos ), где - угол наклона линии контакта.
Для роликоподшипников
аналогичным путем получим
Осевая нагрузка при точном изготовлении и отсутствии перекоса колец распределяется между телами качения равномерно.
Наибольшие контактные напряжения в подшипнике можно определить в зависимости от F0 по одной из формул Герца. Эти напряжения изменяются по отнулевому циклу, что вызывает усталостные разрушения рабочих поверхностей подшипника.
Частота переменных контактных напряжений, а, следовательно, и интенсивность усталостных разрушений зависят от того, какое кольцо вращается. С этой точки зрения вращение внутреннего кольца является наиболее благоприятным, так как при одной и той же угловой скорости окружные скорости на дорожках качения оказываются в этом случае меньше, чем при вращении наружного кольца.