
- •I.Теоретические вопросы требующие развернутого ответа
- •3.Основные типы кристаллических решеток металлов : оцк, гцк, гп.Их параметры.
- •5.Дефекты кристаллического строения реальных металлов : точечные , линейные , поверхностные и объемные.Их роль в формировании свойств металлов .
- •7.Кристаллизация металлов : несамопроизвольная кристаллизация , строение литого металла .Способы управления процессом кристаллизации.
- •8.Строение металлических сплавов .Понятия : сплав , термодинамическая система , компонент , фаза.
- •9.Твердые растворы замещения : определение , типы тр замещения , условия их образования , примеры.
- •10.Твердые растворы внедрения : условия образования , примеры.
- •11.Химические соединения : определение , условия образования , примеры.
- •12.Правило фаз Гиббса. Диаграмма состояния двухкомпонентных систем. Ликвидус и солидус.
- •15.Диаграмма фазового равновесия с нерастворимостью компонентов в твердом состоянии и эвтектикой. Типы образующихся структур.
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в компонентов в твердом состоянии (механические смеси)
- •16.Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой. Предельная растворимость , линия сольвус. Типы образующихся структур.
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •17.Диаграмма состояния системы с образованием устойчивого химического соединения . Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •18.Свойства железа , углерода , полиморфизм , критические точки .Взаимодействие железа с углеродом.
- •19.Фазы и структурные составляющие сплавов Fe-c (Fe3c) : определения , характеристики свойства.
- •20.Диаграмма фазового равновесия железо-углерод : реакции равновесия в системе. Диаграмма состояния железо—углерод (Fe—с)
- •24.Термическая обработка металлов и сплавов .Классификация видов термической обработки.
- •25.Способы отжига сталей : полный и неполный отжиг , нормализация.
- •26.Способы отжига сталей : гомогенизирующий , сфероидизирующий отжиг. Суть режимы.
- •28.Превращения , происходящие при нагреве сталей до аустенитного состояния. Понятие о китических точках сталей Ac1 , Ac3 , Acm , Ar1 , Ar3 ,Arm.
- •1. Превращение перлита в аустетит
- •29.Закалка сталей-полная и неполная . Понятие о критической скорости закалки .Закалка сталей на мартенсит.
- •30.Превращения происходящие при охлаждении сталей : промежуточное (бейнитное) превращение , особенности , структура. Бейнитное превращение Строение бейнита
- •Участок диаграммы состояния Fe — с
- •31.Превращения происходящие при отпуске закаленной стали. Низкий , средний и высокий отпуск : режимы, структура стали после отпуска.
- •32.Химико-термическая обработка . Общие закономерности хто.
- •Химико-термическая обработка стали
- •33.Цементация сталей : сущность , температурные режимы , структура после цементации.
- •35. Нитроцементация: сущность, температурные режимы, структура поверхности стали после нитроцементации.
- •36. Углеродистые стали. Влияние углерода и примесей на свойства стали.
- •38. Конструкционные углеродистые стали обыкновенного качества: классификация, маркировка, применение.
- •Стали конструкционные углеродистые обыкновенного качества
- •Стали группы а
- •Стали группы б
- •Стали группы в
- •Маркировка
- •Применение
- •39.Качественные конструкционные углеродистые стали : классификация , маркировка , применение.
- •40.Чугуны.Маркировка чугунов.
- •41. Классификация по назначению и маркировка легированных сталей. Примеры.
- •42.Легированные стали. Влияние легирующих элементов на структуру и свойства сталей. Карбиды в легированных сталях.
- •43.Легированные стали : подшипниковые стали : принцип легирования , маркировка , термообработка . Подшипниковые стали
- •44.Легированные стали : высокопрочные легированные стали : принципы легирования , термообработка.
- •45.Легированные стали : стали для строительных конструкций , принцип легирования , маркировка термообработка.
- •46.Легированные стали : улучшаемые стали , принцип легирования , маркировка , термообработка.
29.Закалка сталей-полная и неполная . Понятие о критической скорости закалки .Закалка сталей на мартенсит.
1. Полная закалка, с температурой нагрева на 30…50oС выше критической температуры Аc3: Тн = Ас3 + (30..50)о С
Применяют ее для доэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:
Неполная
закалка доэвтектоидных сталей недопустима,
так как в структуре остается мягкий
феррит.
Изменения структуры стали при нагреве
и охлаждении происходят по схеме:
2. Неполная с температурой нагрева на 30…50 oС выше критической температуры А1: Тн = А1 + (30..50)о С
Применяется для заэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:
После охлаждения в структуре остается вторичный цементит, который повышает твердость и износостойкость режущего инструмента. После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита.Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму.Критическая скорость охлаждения (закалки) – это минимальная скорость охлаждения, при которой предотвращается диффузионный распад переохлажденного аустенита.
Закалка на мартенсит (мартенситное превращение)
При больших степенях переохлаждения возрастает термодинамическая неустойчивость аустенита, а скорость диффузии углерода резко падает. При переохлаждении аустенита в эвтектоидной стали до 240 °С подвижность атомов углерода близка к нулю и происходит бездиффузионное превращение аустенита. При этом меняется лишь тип решетки , а весь углерод, ранее растворенный в решетке аустенита, остается в решетке феррита несмотря на то, что равновесная концентрация углерода в феррите не превышает 0,006 % при комнатной температуре. В результате образуется пересыщенный твердый раствор внедрения углерода в -железе, который называется мартенситом. Из-за пересыщенности углеродом решетка мартенсита сильно искажена и вместо кубической приобретает тетрагональную форму, в которой отношение периодов решетки существенно отличается от единицы, т. е. с/а 1. Чем больше углерода, тем выше степень тетрагональности мартенсита (рис. 8.8).
|
Рис. 8.8. Тетрагональная кристаллическая ячейка |
Мартенсит имеет высокую хрупкость и твердость (до 65 НRCЭ). Высокая твердость мартенсита обусловлена искажениями кристаллической решетки и соответственно большими внутренними напряжениями, определяемыми растворенным углеродом, а также возникновением фазового наклепа вследствие увеличения объема при превращении аустенита в мартенсит, в результате чего плотность дислокации в мартенсите достигает уровня плотности дислокации холоднодеформируемой стали и равняется 1010–1012 см–2.Скорость образования кристаллов мартенсита очень велика и достигает 1000 м/с. Пластины мартенсита растут до границы аустенитного зерна либо до имеющегося в стали дефекта. Последующие пластины мартенсита, расположенные под углом к первым (60°, 120°), ограничены их размерами.Высокая скорость образования кристаллов мартенсита при низкой температуре протекания превращения объясняется тем, что имеет место непрерывный переход от кристаллической решетки аустенита к решетке мартенсита.При практически мгновенном (скорость в 3 раза больше скорости звука) переходе атомы смещаются упорядоченно, строго ориентированно на расстояния, меньшие межатомных. При этом сохраняется общая сопрягающаяся плоскость решеток - и -Fe — так называемая когерентная связь. Когерентное превращение обусловливает перемещение атомов только на близкие расстояния при переходе атомов из одной решетки в другую. Поэтому кристаллическая решетка новой фазы мартенсита закономерно ориентирована относительно исходной фазы — аустенита. Из-за когерентного сопряжения решеток и различия удельных объемов фаз (аустенита и мартенсита) мартенситное превращение приводит к возникновению больших внутренних напряжений.Мартенситное превращение идет в интервале температур начала и конца мартенситного превращения Мн и Мк. Для эвтектоидной стали оно начинается при 240 и заканчивается при –50 °С. Однако при этой температуре в стали сохраняется еще некоторое количество непревращенного, так называемого «остаточного аустенита». Охлаждение ниже температуры Мк не приводит к его окончательному распаду. Положение точек Мн и Mк не зависит от скорости охлаждения, но зависит от содержания углерода в стали (рис. 8.9). Все легирующие элементы, растворенные в аустените, за исключением кобальта и алюминия, понижают точки Мн и Мк.Мартенситное превращение очень чувствительно к напряжению, а деформация аустенита может вызвать превращения даже при температурах выше Мн (образуется мартенсит деформации).Кристаллы в зависимости от состава сплава, а следовательно в зависимости от температуры своего образования, могут иметь различную морфологию и субструктуру. Различают два вида мартенсита: пластинчатый (игольчатый) и пакетный (реечный) (рис. 8.10).Пластинчатый мартенсит образуется в высокоуглеродистых сталях, имеющих низкие значения Мн и Мк. В этом случае кристаллы мартенсита в средней зоне содержат большое число микродвойников, образующих зону повышенной травимости, называемой мидрибом (рис. 8.10, а). Сами кристаллы мартенсита в этом случае представляют собой широкие пластины, которые в плоскости шлифа имеют вид игл.Пакетный (реечный) мартенсит характерен для низко- и среднеуглеродистых, а также конструкционных легированных сталей. В этом случае кристаллы мартенсита имеют форму тонких реек, вытянутых в одном направлении (рис. 8.10, б) и объединенных в пакеты. Тонкая структура пакетного (реечного) мартенсита представляет собой запутанные дислокации высокой плотности ( 1010–1012см2) при полном отсутствии двойников. В легированных сталях внутри мартенситных пакетов между кристаллами мартенсита, как правило, присутствуют прослойки остаточного аустенита (рис. 8.10, б).
|
|
Рис. 8.9. Влияние содержания углерода в стали на температуру начала Мн и конца Mк мартенситного превращения |
Рис. 8.10. Схема образования пластинчатого (игольчатого) (а) и пакетного (реечного) (б) мартенсита |
Размеры кристаллов любой морфология мартенсита определяются величиной исходного зерна аустенита. Они тем крупнее, чем больше зерно аустенита. Первая пластина мартенсита имеет протяженность, соответствующую поперечному размеру зерна аустенита. Кристаллы, образующиеся при более низких температурах, имеют уже меньшую протяженность (рис. 8.10, а).Если эвтектоидную сталь охладить только до комнатной температуры, то в структуре кроме мартенсита будет присутствовать некоторое количество остаточного аустенита. Наличие остаточного аустенита нежелательно, так как это приводит к неоднородности свойств по сечению и изменению размеров деталей. Последнее обстоятельство объясняется тем, что мартенсит имеет наибольший удельный объем по сравнению с другими структурами, а аустенит — наименьший. Поэтому при переходе от аустенитной структуры к мартенситной объем и размеры деталей увеличиваются. К особенностям мартенситного превращения относится то, что оно происходит только при непрерывном охлаждении. Задержка охлаждения при температуре выше температуры конца мартенситного превращения приводит к стабилизации аустенита. Аустенит становится более устойчивым. При последующем охлаждении его превращение затруднено и протекает с меньшей интенсивностью и полнотой. Эффект стабилизации аустенита зависит от температуры остановки при охлаждении.Таким образом, особенностями мартенситного превращения являются его бездиффузионный характер, ориентированность кристаллов и образование при непрерывном охлаждении в интервале температур Мн–Мк. Характерной чертой мартенсита является его высокая твердость и прочность, значения которых возрастают с увеличением содержания углерода в мартенсите. Временное сопротивление низкоуглеродистого мартенсита (0,025 % С) составляет 1000 МПа, а мартенсит с содержанием 0,6–0,7 % С имеет временное сопротивление 2 600–2 700 МПа. Однако с повышением в мартенсите содержания углерода возрастает и его склонность к хрупкому разрушению. Мартенсит, содержащий более 0,35–0,4 % С, имеет низкое сопротивление зарождению и распространению трещины, а также низкие значения вязкости разрушения KIс.Увеличение удельного объема при образовании мартенсита является одной из основных причин возникновения при закалке больших внутренних напряжений, вызывающих деформацию и коробление изделий, а также появление закалочных трещин.