
- •I.Теоретические вопросы требующие развернутого ответа
- •3.Основные типы кристаллических решеток металлов : оцк, гцк, гп.Их параметры.
- •5.Дефекты кристаллического строения реальных металлов : точечные , линейные , поверхностные и объемные.Их роль в формировании свойств металлов .
- •7.Кристаллизация металлов : несамопроизвольная кристаллизация , строение литого металла .Способы управления процессом кристаллизации.
- •8.Строение металлических сплавов .Понятия : сплав , термодинамическая система , компонент , фаза.
- •9.Твердые растворы замещения : определение , типы тр замещения , условия их образования , примеры.
- •10.Твердые растворы внедрения : условия образования , примеры.
- •11.Химические соединения : определение , условия образования , примеры.
- •12.Правило фаз Гиббса. Диаграмма состояния двухкомпонентных систем. Ликвидус и солидус.
- •15.Диаграмма фазового равновесия с нерастворимостью компонентов в твердом состоянии и эвтектикой. Типы образующихся структур.
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в компонентов в твердом состоянии (механические смеси)
- •16.Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой. Предельная растворимость , линия сольвус. Типы образующихся структур.
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •17.Диаграмма состояния системы с образованием устойчивого химического соединения . Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •18.Свойства железа , углерода , полиморфизм , критические точки .Взаимодействие железа с углеродом.
- •19.Фазы и структурные составляющие сплавов Fe-c (Fe3c) : определения , характеристики свойства.
- •20.Диаграмма фазового равновесия железо-углерод : реакции равновесия в системе. Диаграмма состояния железо—углерод (Fe—с)
- •24.Термическая обработка металлов и сплавов .Классификация видов термической обработки.
- •25.Способы отжига сталей : полный и неполный отжиг , нормализация.
- •26.Способы отжига сталей : гомогенизирующий , сфероидизирующий отжиг. Суть режимы.
- •28.Превращения , происходящие при нагреве сталей до аустенитного состояния. Понятие о китических точках сталей Ac1 , Ac3 , Acm , Ar1 , Ar3 ,Arm.
- •1. Превращение перлита в аустетит
- •29.Закалка сталей-полная и неполная . Понятие о критической скорости закалки .Закалка сталей на мартенсит.
- •30.Превращения происходящие при охлаждении сталей : промежуточное (бейнитное) превращение , особенности , структура. Бейнитное превращение Строение бейнита
- •Участок диаграммы состояния Fe — с
- •31.Превращения происходящие при отпуске закаленной стали. Низкий , средний и высокий отпуск : режимы, структура стали после отпуска.
- •32.Химико-термическая обработка . Общие закономерности хто.
- •Химико-термическая обработка стали
- •33.Цементация сталей : сущность , температурные режимы , структура после цементации.
- •35. Нитроцементация: сущность, температурные режимы, структура поверхности стали после нитроцементации.
- •36. Углеродистые стали. Влияние углерода и примесей на свойства стали.
- •38. Конструкционные углеродистые стали обыкновенного качества: классификация, маркировка, применение.
- •Стали конструкционные углеродистые обыкновенного качества
- •Стали группы а
- •Стали группы б
- •Стали группы в
- •Маркировка
- •Применение
- •39.Качественные конструкционные углеродистые стали : классификация , маркировка , применение.
- •40.Чугуны.Маркировка чугунов.
- •41. Классификация по назначению и маркировка легированных сталей. Примеры.
- •42.Легированные стали. Влияние легирующих элементов на структуру и свойства сталей. Карбиды в легированных сталях.
- •43.Легированные стали : подшипниковые стали : принцип легирования , маркировка , термообработка . Подшипниковые стали
- •44.Легированные стали : высокопрочные легированные стали : принципы легирования , термообработка.
- •45.Легированные стали : стали для строительных конструкций , принцип легирования , маркировка термообработка.
- •46.Легированные стали : улучшаемые стали , принцип легирования , маркировка , термообработка.
25.Способы отжига сталей : полный и неполный отжиг , нормализация.
Способы отжига сталей: полный неполный отжиг, нормализация.
Отжиг и нормализация. Назначение и режимы
Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:
улучшить обрабатываемость заготовок давлением и резанием;
исправить структуру сварных швов, перегретой при обработке давлением и литье стали;
подготовить структуру к последующей термической обработке.
Характерно медленное охлаждение со скоростью 30…100oС/ч.
В зависимости от температуры нагрева различают отжиг:
1. полный, с температурой нагрева на 30…50 oС выше критической температуры А3
Проводится для доэвтектоидных сталей для исправления структуры.При такой температуре нагрева аустенит получается мелкозернистый, и после охлаждения сталь имеет также мелкозернистую структуру.
2. неполный, с температурой нагрева на 30…50oС выше критической температуры А1
5. Нормализация. – разновидность отжига.Термическая обработка, при которой изделие нагревают до аустенитного состояния, на 30…50 oС выше А3 или Аст с последующим охлаждением на воздухе.
или
В результате нормализации получают более тонкое строение эвтектоида (тонкий перлит или сорбит), уменьшаются внутренние напряжения, устраняются пороки, полученные в процессе предшествующей обработки. Твердость и прочность несколько выше чем после отжига.В заэвтектоидных сталях нормализация устраняет грубую сетку вторичного цементита.Нормализацию чаще применяют как промежуточную операцию, улучшающую структуру. Иногда проводят как окончательную обработку, например, при изготовлении сортового проката.
26.Способы отжига сталей : гомогенизирующий , сфероидизирующий отжиг. Суть режимы.
Гомогенизирующий (диффузионный) отжиг
Цель гомогенизирующего отжига — устранение химической, а иногда и фазовой неоднородности, вызванной внутрикристаллической ликвацией, и, как правило, отрицательно влияющей на свойства материала Длительность отжига и температура подбираются таким образом, чтобы диффузия успела пройти на расстояния, равные по порядку величины размеру областей неоднородности. Обычно гомогенизирующий отжиг проводят при температурах (0,8-0,9)Тпл., а продолжительность отжига может достигать нескольких десятков часов. При высокой температуре подвижность атомов в кристаллической решетке высокая и с течением времени за счет процессов диффузии происходит постепенное выравнивание химического состава. Все сплавы после кристаллизации характеризуются неравновесной структурой, т. е. их химический состав является переменным как в пределах одного зерна, так и в пределах всего слитка.Однако усреднение химического состава при отжиге происходит в пределах одного зерна, т. е. устраняется в основном дендритная ликвация. Длительность отжига может быть сокращена ускорением диффузии за счет повышения концентрации точечных или иных дефектов с помощью облучения, предварительного наклепа (если они допустимы). Длительность отжига монокристаллов больше, чем поликристаллов, в которых большую роль играет зернограничная диффузия.В процессе отжига металла на гомогенизацию происходит постепенное растворение неравновесных фаз, которые могут образоваться в результате кристаллизации с большой скоростью. При последующем медленном охлаждении после отжига такие неравновесные фазы больше не выделяются. Поэтому после гомогенизации металл обладает повышенной пластичностью и легко поддается пластической деформации.
Сфероидизирующий отжиг с нагревом несколько выше температуры Ас1 и несколько ниже точки Аr1 (740 -780 C ) и последующем медленном охлаждением применяют к заэвтектоидным сталям , что позволяет получить зернистую форму перлита вместо пластинчатой . Для режима сфероидизирующего отжига заэвтектоидных сталей характерен узкий температурный интервал отжигаемости . Верхняя граница не должна быть выше слишком высокой , т.к. иначе при растворении центров карбидного выделения при охлаждении образуется пластинчатый перлит . а для сталей близких к эвтектоидному составу этот интервал особенно узок т.к. точки Асm и А1 сходятся при эвтектоидной концентрации . Выдержка при постоянной температуре необходима для окончательного распада переохлажденного аустенита и коагуляции карбидов и составляет 4-6 часов в зависимости от массы отжигаемого металла . Скорость охлаждения очень сильно влияет на конечную структуру . чем меньше скорость , тем до больших размеров вырастают глобули карбида при распаде аустенита. Регулируя скорость охлаждения , можно получать структуры глобулярного перлита от точечного до крупнозернистого . Более мелкозернистый перлит обладает повышенной твердостью . На твердость будет оказывать влияние и повышение температуры отжига до 800-820 С .Твердость будет снижаться из-за развития сфероидизации , а при дальнейшем повышении температуры отжига твердость растет из-за появления все в большем количестве пластинчатого перлита . Вчем состоит механизм сфероидизации ? В результате деления цементитных пластин получаются мелкие частички цементита . Если избыточный цементит находится в виде сетки, что является дефектом , то перед отжигом предварительно проводят нормализацию для растворения сетки цементита в с последующем охлаждении на воздухе . При делении цементитные пластины растворяются в наиболее тонких участках , а также в местах выхода на межфазную поверхность Ц/А субграниц в цементите или аустените .Деление можно ускорить применив холодную пластическую или теплую деформацию при температурах ниже А1 . После деления пластин мелкие их частицы сфероидизируются , путем переноса углерода через окружающий твердый раствор . Сфероидизирующему отжигу подвергают углеродистые , легированные инструментальные и шарикоподшипниковые стали . Кроме того , структкра зернистого перлита является наилучшей перед закалкой - меньше склонность к росту аустенитного зерна , шире допустимый интервал закалочных температур , Если при при однократном отжиге не происходит полной сфероидизации цементита , то можно применить циклический отжиг . Например , углеродистую сталь несколько раз попеременно нагревают до 740 С и охлаждают до 680 С .
|

Пластина цементита при каждом нагреве частично растворяется в аустените . При каждом охлаждении из аустенита выделяется цементит на нерастворившихся остатках цементитных пластин . Попеременно растворяясь и подрастая , цементитная пластина постепенно округляется . Сложности возникают с контролированием колебаний температуры в больших массах материала в заданном интервале .