
- •1. Тепловое излучение. Основные характеристики теплового излучения. Абсолютно черное тело. Закон Кирхгофа
- •2. Законы излучения абсолютно черного тела (Стефана – Больцмана и Вина). Гипотеза и формула Планка для абсолютно черного тела
- •3. Фотоны. Энергия, масса и импульс фотона
- •4. Внешний фотоэффект. Вольтамперная характеристика фотоэффекта. Законы Столетова. Уравнение Эйнштейна
- •5. Давление света
- •6. Комптон – эффект и его объяснение
- •7. Корпускулярно-волновой дуализм материи. Гипотеза де Бройля, ее экспериментальное подтверждение.
- •8. Волны де Бройля. Статистический смысл волн де Бройля, свойства волн.
- •9. Соотношения неопределенностей Гейзенберга, их физическое содержание
- •10. Статистический смысл и свойства волновой функции. Уравнение Шредингера в стационарной форме, смысл входящих величин
- •11. Частица в бесконечно глубокой одномерной потенциальной яме. Квантование энергии частицы. Собственные значения волновой функции
- •14. Туннельный эффект. Коэффициент прозрачности барьера
- •15. Квантово-механический осциллятор
- •16. Модель атома Бора. Постулаты Бора. Спектр излучения атома водорода. Недостатки теории Бора. Опыт Франка – Герца
- •17. Квантовомеханическая теория атома водорода. Уравнение Шредингера для атома водорода, анализ его решения. Собственные значения энергии электрона в атоме. Потенциал ионизации
- •18. Квантование энергии, момента импульса и проекции момента импульса электрона в атоме водорода
- •19. Кратность вырождения уровней энергий. Символика обозначения квантовых состояний
- •20. Магнитные свойства атома. Спин электрона. Орбитальные и спиновые характеристики электрона в атоме. Опыт Штерна – Герлаха
- •21. Полный набор квантовых чисел электронов в атоме, их физический смысл
- •22. Спектр излучения атома водорода. Правила отбора квантовых чисел. Серии излучения атома водорода
- •23. Символика обозначений квантовых состояний. Понятие о вырождении. Принцип Паули. Периодическая система Менделеева
- •24. Магнитный момент атома. Атом в магнитном поле. Эффект Зеемана.
- •25. Рентгеновское излучение. Тормозное и характеристическое излучение. Закон Мозли.
- •26. Молекулы. Энергия молекул. Молекулярные спектры.
- •27. Физические принципы работы лазеров.
- •28. Твердое тело. Образование энергетических зон в твердом теле. Зона проводимости, валентная зона, запрещенная зона. Энергетическая схема твердого тела для металлов, полупроводников, диэлектриков.
- •29. Квантовая модель свободных электронов в металлах. Распределение электронов по энергиям. Уровень Ферми.
- •30. Функция Ферми – Дирака. Энергия Ферми. Понятие вырожденного и невырожденного электронного газа. Условие вырождения.
- •31. Плотность электронных состояний. Заполнение электронами энергетических зон. Энергия и уровень Ферми.
- •32. Элементы квантовой статистики. Нахождение числа электронов в заданном интервале энергий. Нахождение средних значений. Средняя энергия электронов в металле.
- •33. Электрическая проводимость твердых тел с точки зрения зонной теории. Металлы, полупроводники, диэлектрики.
- •34. Чистые полупроводники. Механизм проводимости. Зависимость проводимости от температуры.
- •35. Примесные полупроводники p-типа и n-типа. Механизмы проводимости. Зависимость проводимости от температуры.
- •36. Фотопроводимость полупроводников. Её закономерности.
- •37. Тепловые свойства твердых тел. Экспериментальная зависимость теплоёмкости твёрдых тел от температуры, её объяснение.
- •38. Теплоёмкость твердых тел. Закон Дюлонга – Пти, закон Дебая. Фононы.
- •40. Структура атомных ядер. Характеристики нуклонов. Символическая запись ядер.
- •41. Ядерные силы и их свойства. Дефект массы и энергия связи. Устойчивость ядер. Способы выделения энергии.
- •42. Закон радиоактивного распада. Постоянная распада, среднее время жизни ядра, период полураспада, активность.
- •43. Виды радиоактивного распада. Α – распад, схема распада, закономерности распада.
- •45. Ядерные реакции, их закономерности. Реакции деления. Реакции синтеза. Энергетический выход реакции.
10. Статистический смысл и свойства волновой функции. Уравнение Шредингера в стационарной форме, смысл входящих величин
Волновая функция имеет статистический смысл: квадрат модуля волновой функции определяет плотность вероятности нахождения частицы (электрона): dw/dV = |Ψ|2.
Здесь dw вероятность нахождения частицы в элементе объема от V до V+dV.
Свойства волновой функции:
1) Правило нормировки:
Правило выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией во всем пространстве равна единице.
2) Импульс частицы в каждом из направлений x, y, z пропорционален первой производной волновой функции, делённой на саму волновую функцию, а именно:
где px , py , pz — проекции импульсов на соответствующие оси координат, i = √-1 - мнимая единица, ħ = h/2π - постоянная Планка.
3)
Кинетическая
энергия
частицы (p2x
+
p2y
+ p2z)
/ 2m
пропорциональна
второй производной, или кривизне
волновой функции, деленной на эту
волновую функцию
.
Стационарное уравнение Шредингера для движения электрона в кулоновском поле ядра атома водорода и водородоподобных атомов имеет вид: ∆ψ + (8π2m/h2)(E-U)Ψ = 0,
где Ψ – волновая функция, ∆ - оператор Лапласа, Е – полная энергия электрона в атоме, U = -(Ze2/4πε0r) – потенциальная энергия.
11. Частица в бесконечно глубокой одномерной потенциальной яме. Квантование энергии частицы. Собственные значения волновой функции
Потенциальная яма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.
Используя граничные условия, имеем:
Ψ(x = 0) = a sin α = 0 Отсюда, α = 0
Ψ(x = 1) = a sin ωl = 0 Отсюда, ωl = ± nπ (n = 1,2, …)
Учитывая значения ω, получим:
En = ħ2π2/2ml n2 (n = 1, 2, …)
En – собственные значения энергии.
Принцип
квантования энергии гласит, что любая
система взаимодействующих частиц,
способная образовывать стабильное
состояние - будь то кусок твердого тела,
молекула, атом или атомное ядро, - может
сделать это только при определенных
значениях энергии.
12. Прохождение частиц через полубесконечный потенциальный барьер высотой U0 (E < U0)
Если энергия частицы недостаточна для преодоления барьера,
E < U0, то в некоторой точке x1 частица, движущаяся слева направо, останавливается и затем движется в обратном направлении. То есть потенциальный барьер является как бы непрозрачной стенкой, барьером, для частиц с энергией, меньшей высоты потенциального барьера.
В квантовой механике, в отличие от классической, возможно прохождение через потенциальный барьер частиц с энергией
E < U0 . Такие особенности поведения частиц в квантовой физике непосредственно связаны с корпускулярно-волновой природой микрочастиц.
13. Прохождение частиц через полубесконечный потенциальный барьер высотой U0 (E > U0)
В классической механике прохождение частицы через потенциальный барьер возможно лишь в том случае, если её полная (кинетическая + потенциальная) энергия E превышает высоту потенциального барьера: E > U0; тогда частица пролетает над барьером.
В квантовой механике, в отличие от классической, возможно отражение от потенциального барьера. частиц с энергией E > V0 .
Такие особенности поведения частиц в квантовой физике непосредственно связаны с корпускулярно-волновой природой микрочастиц.