
- •Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования «Тульский государственный университет»
- •230100 Информатика и вычислительная техника
- •23010012 Системы мультимедиа и компьютерная графика
- •Тула 2010 г.
- •Оглавление
- •1.Введение
- •2.Обзор технологий сапр
- •3.Понятия cad, сам и сае
- •3.1.Aвтоматизированное проектирование (computer – aided design – cad)
- •3.2.Автоматизированное производство (computer – aided manufacturing – сам)
- •3.3.Автоматическое конструирование (computer – aided engineering – сае)
- •4.Обзор программного обеспечения cae (Computer Aided Engineering)
- •4.1.Лидеры рынка сае
- •4.2.Аппаратные средства
- •5.История развития cae-систем
- •6.Основы прочностных расчетов
- •6.1.Этапы мкэ
- •7.Основные понятия моделирОвания деформаций
- •8.Введение в мкэ
- •9.Механические свойства материалов
- •9.1.Усталостная прочность
- •9.2.Твердость материала
- •9.3.Модуль Юнга
- •9.4.Модуль сдвига
- •9.5.Коэффициент Пуассона
- •9.6.Аускетики
- •10.Достоверность мкэ
- •11.Матрицы в cae-ситемах
- •12.Разреженные матрицы в fem-анализе
- •13.Итерационные методы
- •14.Примеры расчета механизма
- •14.1.Кинематическая схема
- •14.2.Выбор электродвигателя
- •14.3 Определение общего передаточного числа зубчатого механизма
- •14.8.Определение частот вращения, мощностей и крутящих моментов на валах
- •14.9.Расчет зубчатых колес на выносливость по напряжениям изгиба
- •14.10.Определение допускаемых напряжений
- •14.11.Определим модуль передачи
- •14.12.Геометрические параметры зубчатого зацепления
- •14.13.Выбор подшипников по номинальному минимальному диаметру вала
- •14.14.Проектный расчет валов
- •14.15.Проверочный расчет подшипников на статическую грузоподъемность
- •14.16.Проверочный расчет подшипников на динамическую грузоподъемность
- •15.Подшипники
- •15.1.Подшипники скольжения
- •15.2.Подшипники качения
- •15.3.Расчет (подбор) подшипников качения на долговечность
- •16.Зубчатые передачи
- •16.1.Эвольвентное зацепление
- •16.2.Зубчатые передачи с зацеплением m.Л. Новикова
- •16.3.Изготовление зубчатых колёс
- •16.4.Расчет зубчатой передачи
- •17.Валы и оси
- •17.1.Основные понятия
- •17.1.1Классификация валов и осей
- •17.1.2Материалы, применяемые для изготовления валов и осей
- •17.1.3Конструктивные элементы валов и осей
- •17.2.Расчет валов и осей
- •17.2.1Расчет валов на прочность
- •17.2.2Расчет валов на совместное действие кручение и изгиба
- •17.2.3Силы, действующие на вал
- •17.2.4Изгибающий момент в точке
- •17.2.5Силы реакции опор
- •17.2.6Рекомендации по конструированию валов и осей
- •18.Резьбовые соединения
- •18.1.Прочность крепежа
- •18.2.Стопорение резьбового соединения
- •18.2.1Контрование
- •18.2.2Шплинтование
- •18.2.3Вязка (обвязка) проволокой
- •18.2.4Установка пружинной шайбы
- •18.2.5Установка стопорной шайбы
- •18.2.6Приварка, пайка, расклёпывание, кернение
- •18.2.7Нанесение на резьбу клея, лаков, краски
- •18.2.8Использование гаек с некруглой резьбой
- •18.2.9Использование анкерных гаек
- •18.3.Момент затяжки
- •18.4.Расчет соединений в WinMachine
- •19.Пружины
- •19.1.Основные понятия
- •19.2.Расчет пружин
- •19.2.1Силы в пружине
- •19.2.2Индекс пружины
- •19.2.3Расчет размера пружины под нагрузкой (осадки пружины)
- •20.Список литературы
4.2.Аппаратные средства
Решение для автоматизации проектирования включает не только программные, но и аппаратные средства. Производительность пользователей САПР складывается из двух частей: быстродействующая аппаратная часть и удобство работы. При выборе компьютера следует учитывать особенности самой программы.
Для инженерных расчетов с плохо распараллеливаемыми процессами следует применять систему с симметричной многопроцессорной архитектурой (SMP), быстрой подсистемой ввода-вывода, высокой вычислительной мощностью и большим объемом быстрой оперативной памяти.
Для инженерных расчетов с хорошо распараллеливаемыми процессами подойдет масштабируемый вычислительный кластер, обладающий быстродействующей структурой межсоединений, специализированной подсистемой распределения знаний и программным обеспечением для повышения эффективности работы.
Проектирование и конструкторско-технологическую работу ускорит рабочая станция с профессиональной видеокартой, увеличивающей скорость операций визуализации, и современной дисковой подсистемой с интерфейсами SAS или SATA и поддержкой механизма RAID.
5.История развития cae-систем
Историю развития рынка CAD/CAM/CAE-систем можно достаточно условно разбить на три основных этапа, каждый из которых длился, примерно, по 10 лет.
Первый этап начался в 1970-е годы. В ходе его был получен ряд научно-практических результатов, доказавших принципиальную возможность проектирования сложных промышленных изделий. Во время второго этапа (1980-е) появились и начали быстро распространяться CAD/CAM/CAE-системы массового применения. Третий этап развития рынка (с 1990-х годов до настоящего времени) характеризуется совершенствованием функциональности CAD/CAM/CAE-систем и их дальнейшим распространением в высокотехнологичных производствах (где они лучше всего продемонстрировали свою эффективность).
На начальном этапе пользователи CAD/CAM/CAE-систем работали на графических терминалах, присоединённых к мейнфреймам производства компаний IBM и Control Data, или же мини-ЭВМ DEC PDP-11 и Data General Nova. Большинство таких систем предлагали фирмы, продававшие одновременно аппаратные и программные средства (в те годы лидерами рассматриваемого рынка были компании Applicon, Auto-Trol Technology, Calma, Computervision и Intergraph). У мейнфреймов того времени был ряд существенных недостатков. Например, при разделении системных ресурсов слишком большим числом пользователей нагрузка на центральный процессор увеличивалась до такой степени, что работать в интерактивном режиме становилось трудно. Но в то время пользователям CAD/CAM/CAE-систем ничего, кроме громоздких компьютерных систем с разделением ресурсов (по устанавливаемым приоритетам), предложить было нечего, так как микропроцессоры были ещё весьма несовершенными. По данным Dataquest, в начале 1980-х стоимость одной лицензии CAD-системы доходила до 90 000 долл.
Развитие приложений для проектирования шаблонов печатных плат и слоёв микросхем сделало возможным появление схем высокой степени интеграции (на базе которых и были созданы современные высокопроизводительные компьютерные системы). В течение 1980-х годов был осуществлён постепенный перевод CAD-систем с мейнфреймов на персональные компьютеры (ПК). В то время ПК работали быстрее, чем многозадачные системы, и были дешевле. По данным Dataquest, к концу 1980-х годов стоимость CAD-лицензии снизилась, примерно, до 20 000 долл.
Следует сказать, что в начале 1980-х годов произошло расслоение рынка CAD-систем на специализированные секторы. Электрический и механический сегменты CAD-систем разделились на отрасли ECAD и MCAD. Разошлись по двум различным направлениям и производители рабочих станций для CAD-систем, созданных на базе ПК:
часть производителей сориентировалась на архитектуру IBM PC на базе микропроцессоров Intel х86;
другие производители предпочли ориентацию на архитектуру Motorola (ПК её производства работали под управлением ОС Unix от AT&T, ОС Macintosh от Apple и Domain OS от Apollo).
Производительность CAD-систем на ПК в то время была ограничена 16-разрядной адресацией микропроцессоров Intel и MS-DOS. Вследствие этого, пользователи, создающие сложные твердотельные модели и конструкции, предпочитали использовать графические рабочие станции под ОС Unix с 32-разрядной адресацией и виртуальной памятью, позволяющей запускать ресурсоёмкие приложения.
К середине 1980-х годов возможности архитектуры Motorola были полностью исчерпаны. На основе передовой концепции архитектуры микропроцессоров с усеченным набором команд (Reduced Instruction Set Computer — RISC) были разработаны новые чипы для рабочих станций под ОС Unix (например, Sun SPARC). Архитектура RISC позволила существенно повысить производительность CAD-систем.
С середины 1990-х годов развитие микротехнологий позволило компании Intel удешевить производство своих транзисторов, повысив их производительность. Вследствие этого появилась возможность для успешного соревнования рабочих станций на базе ПК с RISC/Unix-станциями. Системы RISC/Unix были широко распространены во 2-й половине 1990-х годов, и их позиции все ещё сильны в сегменте проектирования интегральных схем. Зато сейчас Windows NT и Windows 2000 практически полностью доминируют в областях проектирования конструкций и механического инжиниринга, проектирования печатных плат и др. По данным Dataquest и IDC, начиная с 1997 года рабочие станции на платформе Windows NT/Intel (Wintel) начали обгонять Unix-станции по объёмам продаж. За прошедшие с начала появления CAD/CAM/CAE-систем годы стоимость лицензии на них снизилась до нескольких тысяч долларов (например, 6000 долл. у Pro/Engineer).