
- •Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования «Тульский государственный университет»
- •230100 Информатика и вычислительная техника
- •23010012 Системы мультимедиа и компьютерная графика
- •Тула 2010 г.
- •Оглавление
- •1.Введение
- •2.Обзор технологий сапр
- •3.Понятия cad, сам и сае
- •3.1.Aвтоматизированное проектирование (computer – aided design – cad)
- •3.2.Автоматизированное производство (computer – aided manufacturing – сам)
- •3.3.Автоматическое конструирование (computer – aided engineering – сае)
- •4.Обзор программного обеспечения cae (Computer Aided Engineering)
- •4.1.Лидеры рынка сае
- •4.2.Аппаратные средства
- •5.История развития cae-систем
- •6.Основы прочностных расчетов
- •6.1.Этапы мкэ
- •7.Основные понятия моделирОвания деформаций
- •8.Введение в мкэ
- •9.Механические свойства материалов
- •9.1.Усталостная прочность
- •9.2.Твердость материала
- •9.3.Модуль Юнга
- •9.4.Модуль сдвига
- •9.5.Коэффициент Пуассона
- •9.6.Аускетики
- •10.Достоверность мкэ
- •11.Матрицы в cae-ситемах
- •12.Разреженные матрицы в fem-анализе
- •13.Итерационные методы
- •14.Примеры расчета механизма
- •14.1.Кинематическая схема
- •14.2.Выбор электродвигателя
- •14.3 Определение общего передаточного числа зубчатого механизма
- •14.8.Определение частот вращения, мощностей и крутящих моментов на валах
- •14.9.Расчет зубчатых колес на выносливость по напряжениям изгиба
- •14.10.Определение допускаемых напряжений
- •14.11.Определим модуль передачи
- •14.12.Геометрические параметры зубчатого зацепления
- •14.13.Выбор подшипников по номинальному минимальному диаметру вала
- •14.14.Проектный расчет валов
- •14.15.Проверочный расчет подшипников на статическую грузоподъемность
- •14.16.Проверочный расчет подшипников на динамическую грузоподъемность
- •15.Подшипники
- •15.1.Подшипники скольжения
- •15.2.Подшипники качения
- •15.3.Расчет (подбор) подшипников качения на долговечность
- •16.Зубчатые передачи
- •16.1.Эвольвентное зацепление
- •16.2.Зубчатые передачи с зацеплением m.Л. Новикова
- •16.3.Изготовление зубчатых колёс
- •16.4.Расчет зубчатой передачи
- •17.Валы и оси
- •17.1.Основные понятия
- •17.1.1Классификация валов и осей
- •17.1.2Материалы, применяемые для изготовления валов и осей
- •17.1.3Конструктивные элементы валов и осей
- •17.2.Расчет валов и осей
- •17.2.1Расчет валов на прочность
- •17.2.2Расчет валов на совместное действие кручение и изгиба
- •17.2.3Силы, действующие на вал
- •17.2.4Изгибающий момент в точке
- •17.2.5Силы реакции опор
- •17.2.6Рекомендации по конструированию валов и осей
- •18.Резьбовые соединения
- •18.1.Прочность крепежа
- •18.2.Стопорение резьбового соединения
- •18.2.1Контрование
- •18.2.2Шплинтование
- •18.2.3Вязка (обвязка) проволокой
- •18.2.4Установка пружинной шайбы
- •18.2.5Установка стопорной шайбы
- •18.2.6Приварка, пайка, расклёпывание, кернение
- •18.2.7Нанесение на резьбу клея, лаков, краски
- •18.2.8Использование гаек с некруглой резьбой
- •18.2.9Использование анкерных гаек
- •18.3.Момент затяжки
- •18.4.Расчет соединений в WinMachine
- •19.Пружины
- •19.1.Основные понятия
- •19.2.Расчет пружин
- •19.2.1Силы в пружине
- •19.2.2Индекс пружины
- •19.2.3Расчет размера пружины под нагрузкой (осадки пружины)
- •20.Список литературы
15.2.Подшипники качения
Подшипники качения работают преимущественно при трении качения и состоят из двух колец, тел качения, сепаратора, отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение (рис. 15.3). По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба – дорожки качения, по которым при работе подшипника катятся тела качения.
Рис. 15.3 – Принципиальная схема опоры с подшипником качения
Шариковый радиальный подшипник самый распространенный в машиностроении (рис. 15.4). Он дешев, допускает перекос внутреннего кольца относительно наружного до 0 °10'. Предназначен для радиальной нагрузки. Желобчатые дорожки качения позволяют воспринимать осевую нагрузку. Обеспечивает осевое фиксирование вала в двух направлениях. При одинаковых габаритных размерах работает с меньшими потерями на трение и при большей угловой скорости вала, чем подшипники всех других конструкций.
Рис.
15.4 – Шариковый радиальный подшипник
Шариковый радиальный сферический подшипник предназначен для радиальной нагрузки (рис. 15.5). Одновременно с радиальной нагрузкой может воспринимать небольшую осевую нагрузку и работать при значительном (до 2...3°) перекосе внутреннего кольца относительно наружного. Способность самоустанавливаться определяет область его применения.
Рис. 15.5 – Шариковый радиальный сферический подшипник
Роликовый радиальный сферический подшипник рис. 15.6 имеет ту же характеристику, что и шариковый сферический, но обладает наибольшей грузоподъемностью из всех других подшипников таких же габаритных размеров.
Рис. 15.6 – Роликовый радиальный сферический подшипник
Роликовый радиальный подшипник с короткими цилиндрическими роликами рис. 15.7 воспринимает большие радиальные нагрузки. Допускает осевое взаимное смещение колец. Применяется для коротких жестких валов, а также в качестве «плавающих» опор (для валов шевронных шестерен и др.). При необходимости осевой фиксации валов в одном направлении применяют подшипники с дополнительным буртом, а для осевой фиксации в двух направлениях — подшипники с дополнительным буртом и с упорной шайбой. Грузоподъемность подшипника составляет в среднем 1,7 от грузоподъемности шарикового радиального.
Рис.
1.7 – Роликовый радиальный подшипник с
короткими цилиндрическими роликами
Роликовый радиальный подшипник с игольчатыми роликами рис. 15.8 воспринимает только радиальную нагрузку. При сравнительно небольших габаритных размерах обладает высокой радиальной грузоподъемностью.
Рис.
15.8 – Роликовый радиальный подшипник с
игольчатыми роликами
Шариковый радиально-упорный подшипник рис. 15.9 предназначен для комбинированных (радиальных и осевых) или чисто осевых нагрузок. Подшипники, смонтированные попарно, воспринимают осевые силы, действующие в двух направлениях. Применяются при большой частоте вращения.
Рис.
15.9 – Шариковый радиально-упорный
подшипник
Роликовый конический подшипник воспринимает одновременно радиальную и осевую нагрузки (рис. 15.10). Применяется при средних и низких скоростях вращения. Обладает большой грузоподъемностью. Удобно регулируется. Подшипники этого типа, как и предыдущие, устанавливают попарно.
Рис. 15.10 – Роликовый конический подшипник
Шариковый упорный подшипник воспринимает одностороннюю осевую нагрузку (рис. 15.11). При действии осевых сил попеременно в обоих направлениях устанавливают двойной упорный подшипник. Во избежание заклинивания шариков от действия центробежных сил этот подшипник применяют при средней и низкой частоте вращения.
Рис. 15.11 – Шариковый упорный подшипник
В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жесткости, применяются так называемые совмещенные опоры: дорожки качения выполняются непосредственно на валу или на поверхности корпусной детали. Некоторые подшипники качения изготовляют без сепаратора. Такие подшипники имеют большое число тел качения и, следовательно, большую грузоподъемность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.
Подшипники качения маркируют нанесением на торец колец ряда цифр и букв, условно обозначающих внутренний диаметр, серию, тип, конструктивные разновидности, класс точности и др.
Две первые цифры справа обозначают его внутренний диаметр. Для подшипников с размер внутреннего диаметра определяется умножением указанных двух цифр на 5. Третья цифра справа обозначает серию диаметров: особо легкая серия — 1, легкая — 2, средняя — 3, тяжелая — 4 и т. д.
Пятая или пятая и шестая цифры справа обозначают отклонение конструкции подшипника от основного типа. Например, подшипник 7309 основной конструкции пятой цифры в обозначении не имеет, а аналогичный подшипник с бортом клеймится 67309.
Седьмая цифра справа обозначает серию ширин.
Цифры 2, 4, 5 и 6, стоящие через тире впереди цифр у основного обозначения подшипника, указывают его класс точности. Нормальный класс точности обозначается цифрой 0, которая не проставляется. Сверхвысоким классом точности является 2, а затем в порядке понижения точности следует 4, 5, 6 и 0. С переходом от класса 0 к классу 2 допуск радиального биения снижается в 5 раз, а стоимость увеличивается в 10 раз. Приведенный в качестве примера подшипник 7309 — нормального класса точности.
В условном обозначении подшипников могут быть дополнительные знаки, характеризующие изменение металла деталей подшипника, специальные технологические требования и т. д.
Примеры обозначений подшипников: 211 —подшипник шариковый радиальный, легкой серии с внутренним диаметром, нормального класса точности; 6—405— подшипник шариковый радиальный, шестого класса точности; 4—2208— подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии, четвертого класса точности.
По сравнению с подшипниками скольжения имеют следующие преимущества:
значительно меньше потери на трение, а, следовательно, более высокий КПД (до 0,995) и меньший нагрев;
в 10...20 раз меньше момент трения при пуске;
экономия дефицитных цветных материалов, которые чаще всего используются при изготовлении подшипников скольжения;
меньшие габаритные размеры в осевом направлении;
простота обслуживания и замены;
меньше расход смазочного материала;
невысокая стоимость вследствие массового производства стандартных подшипников;
простота ремонта машины вследствие взаимозаменяемости подшипников.
Недостатками подшипников качения являются:
ограниченная возможность применения при очень больших нагрузках и высоких скоростях;
непригодность для работы при значительных ударных и вибрационных нагрузках из-за высоких контактных напряжений и плохой способности демпфировать колебания;
значительные габаритные размеры в радиальном направлении и масса;
шум во время работы, обусловленный погрешностями форм;
сложность установки и монтажа подшипниковых узлов;
повышенная чувствительность к неточности установки;
высокая стоимость при мелкосерийном производстве уникальных по размерам подшипников.