Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЗИА_добавл.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
4.94 Mб
Скачать

9.5.Коэффициент Пуассона

Коэффициент Пуассона (обозначается как μ) характеризует упругие свойства материала.

, где

μ — коэффициент Пуассона;

— деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);

— продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз изменяется поперечное сечение деформируемого тела при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно упругого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5. (Измеряется в относительных единицах: мм/мм, м/м).

Модуль сдвига связан с модулем Юнга через коэффициент Пуассона:

,

где ν - значение коэффициента Пуассона для данного материала.

9.6.Аускетики

Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.

К примеру бумага из однослойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения доли многослойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.

Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы. Так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов как литий (минимальное значение равно -0.54), натрия (-0.44), калия (-0.42), кальция (-0.27), меди (-0.13) и т. д. 67% кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.

10.Достоверность мкэ

Расчет по МКЭ базируется на двух государственных стандартах (ГОСТ Р 50-54-42-88 «Расчеты и испытания на прочность. Метод конечных элементов и программы расчета на ЭВМ пространственных элементов конструкций в упругопластической области деформирования». ГОСТ ISO 10303-104:2000 «Системы промышленной автоматизации и интеграция. Представление данных о продукции и обмен данными. Часть 104. Интегрированный прикладной источник: анализ конечных элементов»), устанавливающих порядок производства прочностных расчетов методом конечных элементов (МКЭ).

МКЭ является численным методом решения дифференциальных уравнений, встречающихся в физике и технике. Возникновение этого метода связанно с решением задач космических исследований (1950г.), и первые он был опубликован в работе М.Тернера, Р.Клужа, Г.Мартина и Л.Топпа (Turner M.J., Clouhg R. W., Martin H.C., Topp L.J. Stiffness and Deflection Analysis of Complex Structures // J. Aeronaut. Sci. – 1956. – №23. – P.805-824). Эта работа способствовала появлению других работ – был опубликован ряд статей с применениями метода конечных элементов к задачам строительной механики и механики сплошных сред. Важный вклад в теоретическую разработку метода сделал в 1965г. Р.Мелош (Melosh R.J. Basis for Derivation of Matrices for the Direct Stiffness method. // J. Am. Inst. For Aeronautics and Astronautics. – 1965. - №1. – P.1631-1637), после чего показанная им связь МКЭ с процедурой минимизации функционала привела к широкому использованию МКЭ при решении задач в других областях техники. В первых работах с помощью метода решались задачи распространения тепла. Затем МКЭ был применен к задачам гидромеханики. Область применения существенно расширилась, когда О.Зенкевичем (Зенкевич О. Метод конечных элементов в технике. – М.: Мир. – 1975. – 541с) на основе глубокого анализа развития и апробации метода было показано, что уравнения, определяющие элементы в задачах строительной механики, распространения тепла, гидромеханики, могут быть легко получены с помощью таких вариантов метода взвешенных невязок, как метод Галеркина и метод наименьших квадратов. 

Установление этого факта сыграло важную роль в теоретическом обосновании МКЭ, так как позволило применять его при решении любых дифференциальных уравнений. МКЭ из численной процедуры решения задач строительной механики превратился в общий метод численного решения дифференциального уравнения или системы дифференциальных уравнений, в том числе и краевых задач теории упругости и теории пластичности. В СССР большой вклад в развитие МКЭ и его применение к прочностным расчетам в машиностроении внес уфимский ученый Р.Р.Мавлютов (Мавлютов Р.Р. Концентрация напряжений в элементах конструкций. – М.: Наука. – 1996. – 240с), которым показано, что МКЭ является одним из наиболее эффективных методов расчета. Он, в частности, позволяет с высокой точностью описать геометрию деталей сложной конфигурации, их напряженно-деформированное состояние в зонах больших градиентов напряжений. 

С помощью МКЭ не представляет затруднений расчет конструкций из разнородных материалов, просто и точно учитываются реальные граничные условия, характеризующие контактные взаимодействия, адгезионные эффекты и т.п.

Интересным примером достоверности метода является сравнение результатов его применения с результами натурных краш-тестов.

Рис. 10.17 – Расчетная и фактическая деформация автомобиля Dodge Neon.

На Рис. 10 .17 показано сравнение расчетной и фактической деформации автомобиля.

   

Рис. 10.18 - Cопоставление расчетных и фактических замедлений, скоростей и перемещений центра масс.

Как видно из Рис. 10 .17, совпадение расчетной и фактической формы деформированного автомобиля очень хорошее. Из Рис. 10 .18 видно, что расхождение расчетных и фактических параметров удара незначительное, и, например, расчетное и фактическое конечное положение центра масс автомобиля различаются не более чем на 50мм.

Институтом NCAC был всесторонне исследован (Zaouk A., Bedewi N., Kan C., Marzougui D. Validation of non-linear finite element vehicle model using multiple impact date. – The George Washington University, NCAC) МКЭ-аналог пикапа Шевроле С-1500, показанный на Рис. 10 .19.

Рис. 10.19 - МКЭ-модель пикапа Chevrolet C1500

Рис. 10.20 - Сравнение моделирования и натурного эксперимента.

Сначала аналог была испытан на фронтальный удар в плоский неподвижный жесткий барьер. Как и аналог Доджа, аналог пикапа Шевроле показал хорошее совпадение с результатами краш-теста (Рис. 10 .20). Затем было произведено испытание на скользящий удар пикапа в бетонное дорожное ограждение на скорости около 100км/ч. На Рис. 10 .20 показано сопоставление кадров видеосъемки с расчетными результатами на виде сверху. Видно, что результат расчета хорошо согласуется с фактическим движением пикапа.

Для полноты на Рис. 10 .21 показано сопоставление кадров видеосъемки с расчетными результатами на виде спереди.

Рис. 10.21 – Сравнение расчетного и фактического движения автомобиля при скользящем ударе

Здесь следует отметить, что скользящий удар является длительным и, как правило, корректно не воспроизводится иными, чем расчет МКЭ, методами реконструкции ДТП.

Рис. 10.22 - Расчетная (жирная линия) и фактическая (тонкая линия) зависимости скорости автомобиля от времени

    На Рис. 10 .22 показана расчетная и фактическая олзависимость скорости центра масс пикапа от времени. Видно, что в период скольжения пикапа по ограждению скорости совпадают с высокой точностью. После отделения пикапа от ограждения расчетная скорость отличается от фактической скорости на величину 1-2м/с=3.6-7.2км/ч, причем расчетная скорость выше фактической. Это обусловлено тем, что расчетная величина затрат кинетической энергии на деформацию меньше фактической, так как каким бы ни был подробным МКЭ-аналог автомобиля, учесть все элементы конструкции не представляется возможным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]