Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety-na-bilety-po-fizike_1.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
689.15 Кб
Скачать

9. Момент инерции.

Движение твердого тела, при котором все точки прямой АВ, жестко связанной с телом, остаются неподвижными, называется вращением тела вокруг неподвижной оси АВ.

Такое твердое тело имеет одну степень свободы и его положение в пространстве полностью определяется значением угла поворота вокруг оси вращения из некоторого, условно выбранного, начального положения этого тела. Мерой перемещения тела за малый промежуток времени dt полагают вектор элементарного поворота тела. По модулю он равен углу поворота тела за время dt, а его направление совпадает с направлением поступательного движения правого буравчика, направление вращения рукоятки которого совпадает с направлением вращения тела (рис. 1). Вектор угловой скорости

Izz – момент инерции относительно неподвижной оси.

Основной закон динамики твердого тела, вращающегося вокруг неподвижной оси Z

Для тела, вращающегося вокруг оси z,

, - момент инерции тела относительно оси вращения z, - угловое ускорение тела, - сумма моментов сил, приложенных к телу, и рассчитанных относительно оси вращения, - индекс суммирования.

Моментом инерции механической системы относительно неподвижной оси а называется физическая величина Ja, равная сумме произведений масс m всех n материальных точек системы на квадраты их расстояний r до оси

,где: mi — масса i-й точки, ri — расстояние от i-й точки до оси.

10.

Рассмотрим вращение стержня вокруг некоторой оси Z (см. рис. 6.8). Кинетическую энергию стержня можно представить в виде:

Eк = I·w2/2. где I - момент инерции стержня относительно оси Z.

Учитывая, что для случая движения по окружности справедливо соотношение Vc = d·w, и приравнивая приведенные выше выражения для кинетической энергии стержня, получим уравнение, которое является выражением теоремы Штейнера:

I = Ic + m·d2/2. Момент инерции тела относительно произвольной оси вращения равен его моменту инерции относительно параллельной оси, проходящей через центр масс тела, плюс произведение массы на квадрат расстояния между этими осями.

11. Кинетическая энергия материальной точки и абсолютно твердого тела.

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости. Кинетическая энергия:характеризует и поступательное и вращательное движения;не зависит от направления движения точек системы и не характеризует изменение этих направлений;характеризует действие и внутренних и внешних сил.Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.Кинетическая энергия твёрдого тела.Для твёрдого тела имеет место формула:

Нужно различать кинетическую энергию твёрдого тела при различных видах его движения.Кинетическая энергия тела твёрдого движущегося поступательно.При поступательном движении, все скорости одинаковы.

12. Работа переменной силы. Если сила или равнодействующая сил изменяет свою величину или направление (движение по криволинейной траектории, причем угол α  ≠ 900), то работа  ∆А, совершаемая переменной силой F (или Fрез) на конечном участке траектории вычисляется следующим образом.

На рисунке 14 представлен график зависимости силы F от пути S. Разобьем весь путь на N участков. Перемещение и действующая сила на каждом участке соответственно равны F i и ∆ r i. Тогда работа А, совершаемая силой F,  равна алгебраической сумме работ, совершаемых  каждой из сил F i на своем  малом   участке  (Рисунок 14):

А = ∆А1 + ∆А2 +....+ ∆А N =  ( F1∙∆ r1) + (F 2∙∆ r2) + ...+( F N∙∆ rN) =   ( Fi∙∆ ri),

где i = 1,2...... N - номер элементарного  участка траектории.

Мо́щностьфизическая величина, равная в общем случае скорости изменения энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени

и мгновенную мощность в данный момент времени:

Потенциальными (консервативными) силами называются такие силы, работа которых зависит только от начальных и конечных положений точек их приложения и не зависит ни от вида траекторий этих точек, ни от законов их движения по траекториям.

Консервативные силы – гравитационные, электростатические.

Потенциальные силы создают стационарное поле, в котором работа силы зависит только от начального и конечного положений перемещаемой точки

Если внешние тела, создающие рассматриваемое поле, могут двигаться относительно инерциальной системы, то это поле не будет стационарным. Но нестационарное поле потенциально, если работа, совершаемая силой F при мгновенном переносе точки ее приложения вдоль любой траектории L, равна нулю

К непотенциальным относятся диссипативные и гироскопические силы. Диссипативными силами называются силы, суммарная работа которых при любых перемещениях замкнутой системы всегда отрицательна (например, силы трения). Гироскопическими силами называются силы, зависящие от скорости материальной точки, на которую они действуют, и направленные перпендикулярно к этой скорости (например, сила Лоренца, действующая со стороны магнитного поля на движущуюся в нем заряженную частицу). Работа гироскопических сил всегда равна нулю.

Мощностью (мгновенной мощностью) называется скалярная величина N, равная отношению элементарной работы А к малому промежутку времени dt, в течение которого эта работа совершается.

Средней мощностью называется величина<N>, равная отношению работы А, совершаемой за промежуток времени t, к продолжительности этого промежутка

Потенциальной энергией называется часть энергии механической системы, зависящая только от ее конфигурации. Убыль потенциальной энергии при перемещении системы из одного произвольного положения в другое произвольное положение измеряется работой, которую совершают при этом все стационарные потенциальные силы (внешние и внутренние), действующие на систему

где Wп(1) и Wп(2) – значения потенциальной энергии системы в начальном и конечном положениях.

При малом изменении конфигурации системы

Для нестационарных потенциальных сил

Потенциальная энергия материальной точки Wп связана с силовой функцией соответствующего потенциального поля соотношением

или

где С – постоянная интегрирования.

13. Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона. Согласно этому закону между любой парой тел во Вселенной действует сила взаимного притяжения. Как и все физические законы, он облечен в форму математического уравнения. Если M и m — массы двух тел, а D — расстояние между ними, тогда сила F взаимного гравитационного притяжения между ними равна:

F = GMm/D2

где G — гравитационная константа, определяемая экспериментально. В единицах СИ ее значение составляет приблизительно 6,67 × 10–11.

Поле тяготения физическое поле, через которое осуществляется гравитационное взаимодействие

В рамках классической физики гравитационное взаимодействие описывается «законом всемирного тяготения» Ньютона, согласно которому сила гравитационного притяжения между двумя материальными точками с массами и пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними:

Здесь гравитационная постоянная, приблизительно равная м³/(кг с²), — расстояние между точками.

Для расчёта поля в более сложных случаях, когда тяготеющие массы нельзя считать материальными точками, можно воспользоваться тем фактом, что поле ньютоновского тяготения потенциально. Если обозначить плотность вещества ρ, то потенциал поля φ удовлетворяет уравнению Пуассона:

Напряжённость гравитацио́нного по́ля — векторная величина, характеризующая гравитационное поле в данной точке и численно равная отношению силы тяготения, действующей на тело, помещённое в данную точку поля, к гравитационной массе этого тела:

14. Гравитационные поля (поля тяготения) являются потенциальными, то есть работа поля по перемещению тела из точки 1 в точку 2 не зависит от формы траектории, а определяется лишь разностью потенциальных энергий тела в точках 1 и 2 соответственно:

A12 = П1 – П2.

Из этого равенства ясно, что определенный физический смысл имеет лишь разность потенциальных энергий в различных точках поля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]