Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые ответы по ФизРасту.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
138.11 Кб
Скачать

10. Значение железа, кремния, алюминия для жизнедеятельности растений.

Железо.

Среднее содержание железа в растениях составляет 0,02-0,08%. Fe3+ почвенного раствора восстанавливается до Fe2+ и в такой форме поступает в корень.

-Железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания.

-Участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями.

-Железо катализирует также начальные этапы синтеза хлорофилла.

Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них — белок ферритин.

Кремний

обнаружен у всех растений. Особенно много его в клеточных стенках. Растения, накапливающие кремний, имеют прочные стебли.

Диатомовые водоросли строят свои оболочки, концентрируя его из окружающей среды. Недостаток кремния может задерживать рост злаков (кукуруза, овес, ячмень и двудольных растений (огурцы, томаты, табак, бобы).

Исключение кремния во время репродуктивной стадии вызывает уменьшение количества семян, при этом снижается число зрелых семян. При отсутствии в питательной среде кремния нарушается ультраструктура клеточных органелл.

Алюминий

относится к макроэлементам, в которых нуждаются только некоторые растения. Предполагается, что он имеет большое значение в обмене веществ у гидрофитов. Интересно отметить, что этот катион концентрируют папоротники и чай. При недостатке алюминия у чайного листа наблюдается хлороз, однако высокие концентрации токсичны для растений. В высоких дозах алюминий связывается в клетках с фосфором, что в итоге приводит к фосфорному голоданию растений.

11. Фотофосфорилирование.

Разница в уровнях энергии между П680 и П700 (> 50 кДж) вполне достаточна для фосфорилирования ADP, так как величина высокоэнергетической фосфатной связи АТР равна 30,6 кДж/моль (7,3 ккал).

Механизм фосфорилирования ADP, сопряженного с деятельностью электронтранспортной цепи, объясняет хемиосмотическая теория.

Сущность хемиосмотической теории состоит в следующем. Цепь переносчиков электронов и протонов, действующая в соответствии с окислительно-восстановительным градиентом, перешнуровывает мембрану таким образом, что трансмембранный перенос е- и Н+ в одну сторону чередуется с переносом в обратную сторону только е-. В результате функционирования такого механизма (Н+-помпы) по одну сторону мембраны накапливается избыток Н+ и возникает электрохимический потенциал ионов Н+, который служит формой запасания энергии. Обратный пассивный ток ионов Н+ через протонный канал Н + -АТРазы, получивший название сопрягающего фактора CF1 сопровождается образованием высокоэнергетической фосфатной связи АТР.

Из среды, окружающей тилакоид, при поглощении пигментами квантов света исчезают, а во внутренней полости тилакоида появляются протоны. В результате на мембране возникает электрохимический потенциал ионов Н+, который затем используется для фосфорилирования ADP. Этот процесс называется нециклическим фотофосфорилированием.