
- •1. Биологические мембраны и их функции.
- •2. Регуляция активности ферментов
- •3. Миграция энергии и транспорт электронов при фотосинтезе.
- •4. Регенерация у растений.
- •5. Световая стадия фотосинтеза.
- •6. Растительная клетка как осмотическая система.
- •7. Пигменты пластид.
- •8. Значение микроэлементов для жизнедеятельности растений.
- •9. Организменный уровень интеграции у растений.
- •10. Значение железа, кремния, алюминия для жизнедеятельности растений.
- •11. Фотофосфорилирование.
- •12. Электрофизиологическая регуляция у растений.
- •13. Гормональная система регуляции у растений.
- •14. Кальций.
- •15. Редукция нитрата.
- •16. Пентозофосфатный путь окисления глюкозы.
- •17. Фиксация молекулярного азота.
- •18. Цикл ди – и трикарбоновых кислот (цикл Кребса).
- •20. Гликолиз.
- •21. Водный обмен растительных клеток.
- •23. Тургорные обратимые движения.
- •24. Функционирование специализированных секреторных структур у растений.
- •25. Физиология стресса.
- •26. Ксилемный транспорт.
- •27. Локомоторный способ движения у жгутиковых.
- •28. Дыхательная электротранспортная цепь и окислительное фосфорилирование.
- •29. Внутриклеточные движения.
- •30. Способы выделения веществ у растений.
- •31. Индукция поляризации у растений.
- •33. Теория «эффекта положения».
- •34. Прямое окисление сахаров.
- •35. Вычеркнут
- •36. Системы регуляции и интеграции у растений.
- •37. Половое размножение цветковых растений.
- •38. Мембранная регуляция у растений.
- •39. Инициация цветения.
- •40. Детерминация пола у растений.
- •41. Механизмы передвижения воды по растению.
- •43. Верхушечный рост.
- •44. Фотосинтез по типу толстянковых (суккулентов).
- •45. Механизмы морфогенеза.
- •46. Фазы онтогенеза растительной клетки.
- •47. Механизмы защиты и устойчивости у растений.
35. Вычеркнут
36. Системы регуляции и интеграции у растений.
Регуляция обеспечивает гомеостаз организма, т. е. сохранение постоянства параметров внутренней среды, а также создает условия для его развития (эпигенеза). На всех уровнях организации гомеостаз обеспечивается отрицательными обратными связями, эпигенез — преимущественно положительными обратными связями.
Внутриклеточные системы регуляции.
К ним относятся регуляция на уровне ферментов, генетическая и мембранная регуляции . Все эти системы регуляции тесно связаны между собой.
Межклеточные системы регуляции.
Они включают в себя по крайней мере трофическую, гормональную и электрофизиологическую системы. Такие взаимодействия сразу обнаруживаются при попытках культивировать те или иные части и органы растений в изолированном виде. Во всех случаях для поддержания жизни изолированных частей в инкубационную среду необходимо добавлять трофические и гормональные факторы, в норме поступающие из других органов целого растения.
Генетическая регуляция.
Генетическая регуляция включает в себя регуляцию на уровне репликации, Транскрипции, процессинга и трансляции. Молекулрные механизмы рёгуляции здесь теже {pH,, ионы, модификация молекул, белки-регуляторы), однако сложность регуляторных сетей возрастает.
Роль генов состоит в хранении и передаче генетической информации. Информация записывается в структуре хромосомной ДНК в виде триплетного нуклеотидного кода. Информация в клетках передается благодаря синтезу РНК на матрице ДНК (транскрипция) и синтеду специализированных белков на матрице мРНК с участием рРНК и тРНК (трансляция). В ходе и после транскрипции или трансляции происходит модификация биополимеров (процессинг), транспортирующихся в места назначения. Специализированные белковые молекулы в соответствии со своей «структурной» информацией путем самосборки образуют специфические комплексы, выполняющие различные функции: каталитические (ферменты), двигательные (сократительные белки), транспортные (насосы и переносчики), рецепторные (хемо- фото- и механорецепторы), регуляторные (белковые активаторы, репрессоры, ингибиторы), защитные (лектины) и др.
Для извлечения в нужный момент необходимой информации из структур хромосом в клетке существует сложная система регуляции, не все стороны которой в настоящее время известны.
Трофическая регуляция.
У растений коррни и другие гетеротрофные органы зависят от поступления ассимилятов, образующихся в листьях в процессе фотосинтеза. В свою очередь надземные части нуждаются в минеральных веществах и воде, поглощаемых корнями из почвы. Корни используют ассимиляты, поступающие из побега, на собственные нужды, а часть трансформированных органических веществ движется в обратном направлении.
Сдвиги в содержании различных ..элементов, „питания оказывают влияние на обмен веществ, физиологические и морфогенетические процессы у растений. При голодании усиливается конкуренция различных участков за продукты питания, что сказывается на процессах морфогенеза.
Однако нужно отметить, что трофическая регуляция носит скорее количественный, чем качественный, характер.