
- •1. Биологические мембраны и их функции.
- •2. Регуляция активности ферментов
- •3. Миграция энергии и транспорт электронов при фотосинтезе.
- •4. Регенерация у растений.
- •5. Световая стадия фотосинтеза.
- •6. Растительная клетка как осмотическая система.
- •7. Пигменты пластид.
- •8. Значение микроэлементов для жизнедеятельности растений.
- •9. Организменный уровень интеграции у растений.
- •10. Значение железа, кремния, алюминия для жизнедеятельности растений.
- •11. Фотофосфорилирование.
- •12. Электрофизиологическая регуляция у растений.
- •13. Гормональная система регуляции у растений.
- •14. Кальций.
- •15. Редукция нитрата.
- •16. Пентозофосфатный путь окисления глюкозы.
- •17. Фиксация молекулярного азота.
- •18. Цикл ди – и трикарбоновых кислот (цикл Кребса).
- •20. Гликолиз.
- •21. Водный обмен растительных клеток.
- •23. Тургорные обратимые движения.
- •24. Функционирование специализированных секреторных структур у растений.
- •25. Физиология стресса.
- •26. Ксилемный транспорт.
- •27. Локомоторный способ движения у жгутиковых.
- •28. Дыхательная электротранспортная цепь и окислительное фосфорилирование.
- •29. Внутриклеточные движения.
- •30. Способы выделения веществ у растений.
- •31. Индукция поляризации у растений.
- •33. Теория «эффекта положения».
- •34. Прямое окисление сахаров.
- •35. Вычеркнут
- •36. Системы регуляции и интеграции у растений.
- •37. Половое размножение цветковых растений.
- •38. Мембранная регуляция у растений.
- •39. Инициация цветения.
- •40. Детерминация пола у растений.
- •41. Механизмы передвижения воды по растению.
- •43. Верхушечный рост.
- •44. Фотосинтез по типу толстянковых (суккулентов).
- •45. Механизмы морфогенеза.
- •46. Фазы онтогенеза растительной клетки.
- •47. Механизмы защиты и устойчивости у растений.
17. Фиксация молекулярного азота.
Химический и биологический пути связывания молекулярного азота.
В природе существуют два пути превращения NО2 в доступную растениям форму. Это химическая и биологическая азотфиксация.
Химическое связывание N2 в форме ионов NH4+ или NO3- небольших размерах осуществляется в результате фотохимических процессов и электрических разрядов в атмоcaepe.
В настоящее время в ряде стран больших масштабов достигло промышленное производство HNO3 и NH3 из азота воздуха. Химическое связывание молекулярного азота с образованием аммиака (N2 + ЗН2 ---> 2NH3) осуществляется в присутствии катализаторов при температуре свыше 500°, давлении около 35 МПа и составляет основу синтеза аммонийных удобрений.
Азотфиксируюшие микроорганизмы.
Микроорганизмы, осуществляющие биологическую азотфиксацию, можно разделить на две основные группы: а) свободноживущие азотфиксаторы Clostridium pasteurianum, Clostridium pasteurianum и б) микроорганизмы, живущие в симбиозе с высшими растениями - ризобиум образующие клубеньки на корнях бобовых растений, а также некоторые актиномицеты и цианобактерии..
Инфицирование растения-хозяина начинается с проникновег ния бактерий рода Rhizobium в клетку корневого волоска. Затем бактерии мигрируют в клетки коры и вызывают интенсивное деление инфицированных клеток, что приводит к образованию клубеньков на корнях. При этом сами бактерии превращаются в бактероиды, которые в среднем в 40 раз больше по объему, чем исходная бактерия. Образование бактероидов тесно связано с синтезом нитрогеназной ферментативной системы.
Молекулярный механизм азотфиксации.
Молекула азота N2(N = N) чрезвычайно прочна и химически инертна. Биологическая фиксация N2 микроорганизмами осуществляется при нормальной температуре и давлении, что свидетельствует об исключительно высокой эффективности участвующего в этом процессе фермента нитрогеназы,
Азотфиксация представляет собой восстановительный процесс и первым стабильным продуктом ее действительно является аммиак.
Процессу азотфиксации необходим постоянный приток электронов и энергии в форме АТР. Источником электронов и АТР для функционирования нитрогеназы у разных типов микроорганизмов могут быть процессы фотосинтеза, дыхания или брожения. Симбиотрофные бактерии рода Rhizobium в качестве источников электронов и АТР используют фотоассимиляты, синтезирующиеся в листьях растения-хозяина и поступающие в корневые клубеньки.
Процесс протекает в бактероиде, окруженном мембраной и локализованном в кортикальных клетках корня растения-хозяина. Основная роль в процессе азотфиксации принадлежит ферменту нитрогеназы. Нитрогеназа катализирует три типа сопряженных реакций: восстановление субстратов, зависимый от восстановителя гидролиз АТР и АТР-зависимое выделение Н2.
Поскольку нитрогеназа разрушается в присутствии 02, у азотфиксирующих микроорганизмов используется ряд механизмов для ее защиты.
Функционирующий в бактероиде цикл Кребса служит источником субстратов для окисления в электронтранспортной цепи, осуществляющей синтез АТР; обеспечивает нитрогеназу электронами через ферредоксин; поставляет кетокцслоты (а-кетоглутарат и др.), которые, реагируя с образуют аминокислоты, транспортируемые затем в клетки растения-хозяина.
Глиоксилатный цикл.
Глиоксилатный цикл можно рассматривать как модификацию цикла Кребса. Он активно функционирует в прорастающих семенах масличных растений и в других растительных объектах, где запасные жиры превращаются в сахара (глюконеогенез).
Глиоксилатный цикл локализован в специализированных микротелах — глиоксисомах. В отличие от цикла Кребса в глиоксилатном цикле в каждом обороте участвует не одна, а две молекулы ацетил-СоА и используется для синтеза янтарной кислоты. Янтарная кислота выходит из глиоксисом, превращается в ЩУК и участвует в глюконеогенезе (обращенном гликолизе) и других процессах биосинтеза.
Глиоксилатный цикл позволяет утилизировать запасные жиры, при распаде которых образуются молекулы ацетил-СоА. Кроме того, на каждые две молекулы ацетил-СоА в глиоксилатном цикле восстанавливается одна молекула NADH, энергия которой может быть использована на синтез АТР в митохондриях или на другие процессы.