Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые ответы по ФизРасту.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
138.11 Кб
Скачать

17. Фиксация молекулярного азота.

Химический и биологический пути связывания молекулярного азота.

В природе существуют два пути превращения NО2 в доступную растениям форму. Это химическая и биологическая азотфиксация.

Химическое связывание N2 в форме ионов NH4+ или NO3- небольших размерах осуществляется в результате фотохимических процессов и электрических разрядов в атмоcaepe.

В настоящее время в ряде стран больших масштабов достигло промышленное производство HNO3 и NH3 из азота воздуха. Химическое связывание молекулярного азота с образованием аммиака (N2 + ЗН2 ---> 2NH3) осуществляется в присутствии катализаторов при температуре свыше 500°, давлении около 35 МПа и составляет основу синтеза аммонийных удобрений.

Азотфиксируюшие микроорганизмы.

Микроорганизмы, осуществляющие биологическую азотфиксацию, можно разделить на две основные группы: а) свободноживущие азотфиксаторы Clostridium pasteurianum, Clostridium pasteurianum и б) микроорганизмы, живущие в симбиозе с высшими растениями - ризобиум образующие клубеньки на корнях бобовых растений, а также некоторые актиномицеты и цианобактерии..

Инфицирование растения-хозяина начинается с проникновег ния бактерий рода Rhizobium в клетку корневого волоска. Затем бактерии мигрируют в клетки коры и вызывают интенсивное деление инфицированных клеток, что приводит к образованию клубеньков на корнях. При этом сами бактерии превращаются в бактероиды, которые в среднем в 40 раз больше по объему, чем исходная бактерия. Образование бактероидов тесно связано с синтезом нитрогеназной ферментативной системы.

Молекулярный механизм азотфиксации.

Молекула азота N2(N = N) чрезвычайно прочна и химически инертна. Биологическая фиксация N2 микроорганизмами осуществляется при нормальной температуре и давлении, что свидетельствует об исключительно высокой эффективности участвующего в этом процессе фермента нитрогеназы,

Азотфиксация представляет собой восстановительный процесс и первым стабильным продуктом ее действительно является аммиак.

Процессу азотфиксации необходим постоянный приток электронов и энергии в форме АТР. Источником электронов и АТР для функционирования нитрогеназы у разных типов микроорганизмов могут быть процессы фотосинтеза, дыхания или брожения. Симбиотрофные бактерии рода Rhizobium в качестве источников электронов и АТР используют фотоассимиляты, синтезирующиеся в листьях растения-хозяина и поступающие в корневые клубеньки.

Процесс протекает в бактероиде, окруженном мембраной и локализованном в кортикальных клетках корня растения-хозяина. Основная роль в процессе азотфиксации принадлежит ферменту нитрогеназы. Нитрогеназа катализирует три типа сопряженных реакций: восстановление субстратов, зависимый от восстановителя гидролиз АТР и АТР-зависимое выделение Н2.

Поскольку нитрогеназа разрушается в присутствии 02, у азотфиксирующих микроорганизмов используется ряд механизмов для ее защиты.

Функционирующий в бактероиде цикл Кребса служит источником субстратов для окисления в электронтранспортной цепи, осуществляющей синтез АТР; обеспечивает нитрогеназу электронами через ферредоксин; поставляет кетокцслоты (а-кетоглутарат и др.), которые, реагируя с образуют аминокислоты, транспортируемые затем в клетки растения-хозяина.

Глиоксилатный цикл.

Глиоксилатный цикл можно рассматривать как модификацию цикла Кребса. Он активно функционирует в прорастающих семенах масличных растений и в других растительных объектах, где запасные жиры превращаются в сахара (глюконеогенез).

Глиоксилатный цикл локализован в специализированных микротелах — глиоксисомах. В отличие от цикла Кребса в глиоксилатном цикле в каждом обороте участвует не одна, а две молекулы ацетил-СоА и используется для синтеза янтарной кислоты. Янтарная кислота выходит из глиоксисом, превращается в ЩУК и участвует в глюконеогенезе (обращенном гликолизе) и других процессах биосинтеза.

Глиоксилатный цикл позволяет утилизировать запасные жиры, при распаде которых образуются молекулы ацетил-СоА. Кроме того, на каждые две молекулы ацетил-СоА в глиоксилатном цикле восстанавливается одна молекула NADH, энергия которой может быть использована на синтез АТР в митохондриях или на другие процессы.