
- •1. Биологические мембраны и их функции.
- •2. Регуляция активности ферментов
- •3. Миграция энергии и транспорт электронов при фотосинтезе.
- •4. Регенерация у растений.
- •5. Световая стадия фотосинтеза.
- •6. Растительная клетка как осмотическая система.
- •7. Пигменты пластид.
- •8. Значение микроэлементов для жизнедеятельности растений.
- •9. Организменный уровень интеграции у растений.
- •10. Значение железа, кремния, алюминия для жизнедеятельности растений.
- •11. Фотофосфорилирование.
- •12. Электрофизиологическая регуляция у растений.
- •13. Гормональная система регуляции у растений.
- •14. Кальций.
- •15. Редукция нитрата.
- •16. Пентозофосфатный путь окисления глюкозы.
- •17. Фиксация молекулярного азота.
- •18. Цикл ди – и трикарбоновых кислот (цикл Кребса).
- •20. Гликолиз.
- •21. Водный обмен растительных клеток.
- •23. Тургорные обратимые движения.
- •24. Функционирование специализированных секреторных структур у растений.
- •25. Физиология стресса.
- •26. Ксилемный транспорт.
- •27. Локомоторный способ движения у жгутиковых.
- •28. Дыхательная электротранспортная цепь и окислительное фосфорилирование.
- •29. Внутриклеточные движения.
- •30. Способы выделения веществ у растений.
- •31. Индукция поляризации у растений.
- •33. Теория «эффекта положения».
- •34. Прямое окисление сахаров.
- •35. Вычеркнут
- •36. Системы регуляции и интеграции у растений.
- •37. Половое размножение цветковых растений.
- •38. Мембранная регуляция у растений.
- •39. Инициация цветения.
- •40. Детерминация пола у растений.
- •41. Механизмы передвижения воды по растению.
- •43. Верхушечный рост.
- •44. Фотосинтез по типу толстянковых (суккулентов).
- •45. Механизмы морфогенеза.
- •46. Фазы онтогенеза растительной клетки.
- •47. Механизмы защиты и устойчивости у растений.
14. Кальций.
Общее содержание кальция у разных видов растений составляет 5 —30 мг на 1 г сухой массы. Растения по отношению к кальцию делят на три группы: кальциефилы, калъциефобы и нейтральные виды.
Много кальция содержат бобовые, гречиха, подсолнечник, картофель, капуста, конопля, гораздо меньше — зерновые, лен, сахарная свекла. В тканях двудольных растений этого элемента, как правило, больше, чем у однодольных.
Кальций накапливается в старых органах и тканях. Это связано с тем, что транспорт его осуществляется по ксилеме и реутилизация затруднена. При старении клеток или снижении их физиологической активности кальций из цитоплазмы перемещается в вакуоль и откладывается в виде нерастворимых солей щавелевой, лимонной и других кислот. Образующиеся кристаллические включения затрудняют подвижность и возможность повторного использования этого катиона.
У большинства культурных растений кальций накапливается в вегетативных органах. В корневой системе содержание его ниже, чем в надземной части.
В клетке большое количество кальция связано с пектиновыми веществами срединной пластинки и клеточной стенки. Это — фонд обменного кальция. Он содержится также в хлоропластах, митохондриях и ядре в комплексах с биополимерами, в виде неорганических фосфатов и в ионизированной форме. В цитозоле (растворимой части цитоплазмы) концентрация Са2+ очень низка (10-7 — 10-6 моль/л).
Кальций выполняет многообразные функции в обмене веществ клеток и организма в целом. Они связаны с его влиянием на структуру мембран, ионные потоки через них и биоэлектрические явления, на перестройки цитоскелета. процессы поляризации клеток и тканей и др.
15. Редукция нитрата.
Поскольку в органические соединения включается только аммонийный азот, ионы нитрата, поглощенные растением, должны восстанавливаться в клетках до аммиака.
Установлено, что процесс редукции нитрата в растениях осуществляется в два этапа:
1. Восстановление нитрата до нитрита (NO3- до NO2-), сопряженное с переносом двух электронов и катализируемое ферментом нитратредуктазой.
2. Восстановление нитрита до аммиака (NO2- до NH4), сопряженное с переносом шести электронов и катализируемое ферментом нитритредуктазой.
Суммарно процесс может быть изображен следующим образом:
NO3- ---нитратредуктаза (2е-)--> N02 - ---нитритредуктаза (6е-)--- > NН4+
Первый этап редукции нитрата, катализируемый нитратредуктазой, протекает в соответствии с уравнением
NO3- + NAD(P)H + Н+ --2е- --- > NO2- + NAD(P)+ + Н20
Грибы и зеленые водоросли в качестве донора электронов при редукции NO3- могут использовать восстановленный NADPH. У высших растений фермент имеет специфическое сродство к NADH, источником которого являются гликолиз и цикл Кребса.
Нитратредуктаза — индуцируемый фермент, синтезируемый в клетке в ответ на поступление NO3- Индуктором синтеза фермента у растений способны быть также органические нитросоединения и цитокинин. Уровень нитратредуктазы в растениях зависит от ряда факторов внешней среды, таких, как свет, температура, pH, концентрация С02 и 02, водный потенциал, характер источника азота и др.
Активность нитратредуктазы высока в меристематических клетках, ею богаты молодые листья и кончики корней.
Нитриты, образующиеся на первом этапе редукции нитратов, в растении не накапливаются, а быстро восстанавливаются до аммиака ферментом нитршпредуктазой. Активность этого фермента в 5 —20 раз выше, чем нитратредуктазы, поэтому в общем процессе редукции нитратов доминирующей ступенью является первый этап реакции, ведущий к образованию NO2- . Нитритредуктаза в качестве донора электронов использует восстановленный ферредоксин. Катализируемая ею реакция может быть представлена следующим образом:
NО2- + 6Фдвосст + 8Н+ --- 6е- ---> NH4+ + 6Фд0КИСЛ + 2Н20
Процесс редукции NO2, катализируемый нитритредуктазой, как и первый этап восстановления нитрата, может происходить и в листьях, и в корнях.
Ионы аммония ингибируют ассимиляцию NO3- репрессируя синтез ферментов нитрат- и нитритредуктаз по принципу обратной связи.
Восстановление нитратов у растений может осуществляться и в листьях, и в корнях, однако относительная доля участия этих органов в редукции нитратов у растений разных видов сильно варьирует. По этому признаку растения подразделяют на три основные группы:
1. Растения, практически полностью восстанавливающие нитраты в корнях и транспортирующие азот к листьям в органической форме. К этой группе относятся многие древесные растения, а также некоторые представители сем. Ericaceae и Vacciniaceae (черника, клюква), многие виды Rhododendron.
2. Растения, практически не проявляющие нитратредуктазной активности в корнях и ассимилирующие нитраты в листьях. К этой группе примыкают хлопчатник и представители сем. Chenopodiaceae (свекла, марь), у которых основное количество поглощенного нитрата восстанавливается в листьях.
3. Растения, способные поддерживать активность нитратредуктазы и в листьях, и в корнях. Это наиболее многочисленная группа, к которой относится большинство травянистых растений, в том числе злаковые, бобовые, многие технические и сельскохозяйственные культуры.