
- •1. Биологические мембраны и их функции.
- •2. Регуляция активности ферментов
- •3. Миграция энергии и транспорт электронов при фотосинтезе.
- •4. Регенерация у растений.
- •5. Световая стадия фотосинтеза.
- •6. Растительная клетка как осмотическая система.
- •7. Пигменты пластид.
- •8. Значение микроэлементов для жизнедеятельности растений.
- •9. Организменный уровень интеграции у растений.
- •10. Значение железа, кремния, алюминия для жизнедеятельности растений.
- •11. Фотофосфорилирование.
- •12. Электрофизиологическая регуляция у растений.
- •13. Гормональная система регуляции у растений.
- •14. Кальций.
- •15. Редукция нитрата.
- •16. Пентозофосфатный путь окисления глюкозы.
- •17. Фиксация молекулярного азота.
- •18. Цикл ди – и трикарбоновых кислот (цикл Кребса).
- •20. Гликолиз.
- •21. Водный обмен растительных клеток.
- •23. Тургорные обратимые движения.
- •24. Функционирование специализированных секреторных структур у растений.
- •25. Физиология стресса.
- •26. Ксилемный транспорт.
- •27. Локомоторный способ движения у жгутиковых.
- •28. Дыхательная электротранспортная цепь и окислительное фосфорилирование.
- •29. Внутриклеточные движения.
- •30. Способы выделения веществ у растений.
- •31. Индукция поляризации у растений.
- •33. Теория «эффекта положения».
- •34. Прямое окисление сахаров.
- •35. Вычеркнут
- •36. Системы регуляции и интеграции у растений.
- •37. Половое размножение цветковых растений.
- •38. Мембранная регуляция у растений.
- •39. Инициация цветения.
- •40. Детерминация пола у растений.
- •41. Механизмы передвижения воды по растению.
- •43. Верхушечный рост.
- •44. Фотосинтез по типу толстянковых (суккулентов).
- •45. Механизмы морфогенеза.
- •46. Фазы онтогенеза растительной клетки.
- •47. Механизмы защиты и устойчивости у растений.
1. Биологические мембраны и их функции.
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол.
Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде.
Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.
Бислой фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.
В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно развлетвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.
Функции:
1) Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.
2) Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
3) Матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
4) Механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).
5) Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
6) Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
7) Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
8) Осуществление генерации и проведения биопотенциалов.(обеспечение разности потенциалов)
9) Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины.