
- •1.Задачи, приводящие к дифференциальным уравнениям (ду). Основные сведения о ду (обыкновенные ду, оду n-ого порядка, решение ду на интервале).
- •2.Задача Коши для ду 1-ого порядка. Теорема существования и единственности решения задачи Коши для ду 1-ого порядка.
- •3.Геометрическая интерпретация ду 1-ого порядка. Метод изоклин.
- •4.Задача Коши для ду n-ого порядка. Общее решение, частное решение, особое решение ду n-ого порядка.
- •5. Уравн. С разделяющимися переменными
- •6. Однородные ду 1-ого порядка
- •7.Линейные ду 1-ого порядка (метод подстановки Бернулли, метод вариации произвольной постоянной Лагранжа).
- •8.Уравнение Бернулли
- •9. Уравнение в полных дифференциалах.
- •10.Дифференциальные уравнения высших порядков. Теорема о существовании и единственности решения. Задача Коши. Приемы понижения порядка (на примерах ду 2-ого порядка).
- •13.Линейные однородные ду n-ого порядка с постоянными коэффициентами. Теорема о структуре общего решения линейного однородного ду n-ого порядка с постоянными коэффициентами.
- •14.Линейные неоднородные ду 2-ого порядка. Теорема о структуре общего решения неоднородного ду.
- •15.Метод вариации произвольных постоянных (Лагранжа) для отыскания частного решения линейного неоднородного ду 2-ого порядка.
- •16. Линейные неоднородные ду с постоянными коэффициентами и специальной правой частью.
- •17. Системы ду. Нормальные системы. Теорема о существовании и единственности решения нормальной системы ду. Задача Коши для системы ду.
- •19.Системы линейных однородных ду с постоянными коэффициентами. Характеристическое уравнение системы ду.
- •20. Решение системы линейных однородных ду с постоянными коэффициентами. Случай действительных различных корней характеристического уравнения.
- •21. Пространство элементарных событий. Алгебра событий.
- •22. Вероятность события. Классическое, статистическое определение вероятности. Геометрическая вероятность.
- •23. Теоремы сложения вероятностей несовместных и совместных событий.
- •24. Условная вероятность. Теорема умножения вероятностей. Вероятность появления хотя бы одного события.
- •25. Формула полной вероятности. Формула Байеса.
- •26. Повторение испытаний. Схема испытаний Бернулли. Биномиальное распределение вероятностей. Наивероятнейшее число появлений события в независимых испытаниях.
- •27. Распределение Пуассона. Локальная предельная теорема Муавра-Лапласа.
- •28. Интегральная предельна теорема Муавра-Лапласа. Отклонение относительной частоты от постоянной вероятности в независимых испытаниях.
- •Понятие случайной величины. Функция распределения случайной величины, ее свойства.
- •Дискретные случайные величины. Построение функции распределения.
- •Непрерывные случайные величины. Плотность вероятности случайной величины, ее свойства.
- •Числовые характеристики случайных величин. Математическое ожидание дискретных и непрерывных случайных величин. Свойства.
- •33.Числовые характеристики случайных величин. Дисперсия дискретных и непрерывных случайных величин. Свойства.
- •34.Числовые характеристики случайных величин. Мода, медиана, начальные и центральные моменты, асимметрия, эксцесс случайных величин.
- •35.Равномерный закон распределения случайных величин.
- •36.Биномиальный закон распределения случайных величин.
- •40.Закон больших чисел. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли.
- •46.Линии регрессии. Корреляция.
- •47.Определение характеристик случайных величин на основе опытных данных. Выборка и ее характеристики. Частота и относительная частота.
- •48.Эмпирическая функция распределения. Полигон и гистограмма.
- •51.Проверка статистических гипотез. Критерии согласия Пирсона и Колмогорова.
- •52.Понятие о двумерных выборках и выборочных оценках двумерных св.
- •55. Временные ряды и прогнозирование. Автокорреляционная функция. Авторегрессионная модель.
55. Временные ряды и прогнозирование. Автокорреляционная функция. Авторегрессионная модель.
Экономические процессы, которые характеризуют различные влияния классифицируют как детерминированные и недетерменированные.
Детерминир. Являются те процессы, которые описываются точными математическими соотношениями.
Большинство экономических процессов недетеминированные, где точное значение процесса в некоторое время точны.
Модели временных рядов необходимые для оптимального прогнозирования будут являться статистическими.
Под временным рядом понимают множество наблюдений генерируемых последовательно по времени, если время непрерывно, то временной ряд называют непрерывным.
Временной ряд
хк(t),
где
представляет
собой множество или ансамбль действительных
функций, которая задается отношением
его вероятностой структуры.
Анализируя временной ряд рассматриваем его как реализацию стохастического процесса. При прогнозировании временные ряды лучше описываются как не стационарные процессы, не имеющие своего среднего значения.
Коэффициент автокорреляции отражает, в сущности, обычную корреляцию, вычисляемую между образующими временной ряд текущими и запаздывающими значениями зависимой переменной (весом тела в нашем примере). Этот коэффициент (вычисляемый по формуле, весьма похожей на формулу коэффициента корреляции Пирсона) является мерой линейной зависимости между наблюдениями, разделенными определенными временными интервалами, — т. е. мерой линейной связи между смежными наблюдениями.
Совокупность коэффициентов автокорреляции, основанных на разной величине лага, есть не что иное, как расчетная автокорреляционная функция, график к-рой обычно наз. коррелограммой. Для проверки значимости этих коэффициентов применяют соотв. статистические критерии.
Для прогнозирования будущих показателей на основе имеющихся временных рядов необходимо идентифицировать модель, которая наилучшим образом описывает процесс порождения выборочного временного ряда. Для идентификации такой модели можно воспользоваться расчетной автокорреляционной функцией. Из множества моделей для описания динамики временных рядов чаще всего используются три: модель белого шума, авторегрессионная модель первого порядка и авторегрессионная модель второго порядка. Если расчетная автокорреляционная функция представляет собой совокупность незначимых автокорреляций, это явное указание на то, что изменчивость данного времени ого ряда лучше всего охарактеризовать как «белый шум», или случайные флуктуации.
Авторегрессионная модель первого порядка во мн. случаях является хорошим средством представления данных временного ряда; следовательно, форма автокорреляционной функции этой модели должна быть сравнима с формой расчетной автокорреляционной функции. Известно, что авторегрессионная модель первого порядка связана с автокорреляциями, к-рые быстро затухают при лагах более высокого порядка.
Для представления нек-рых данных лучше подходит др. полезная модель — авторегрессионная модель второго порядка. Если эта модель лучше соответствует данным, чем авторегрессионная модель первого порядка, поведение во время t можно предсказать с меньшей погрешностью, используя информ. с запаздыванием на два шага в добавление к информ. о среднем и замере с запаздыванием на один шаг.