
- •1.Задачи, приводящие к дифференциальным уравнениям (ду). Основные сведения о ду (обыкновенные ду, оду n-ого порядка, решение ду на интервале).
- •2.Задача Коши для ду 1-ого порядка. Теорема существования и единственности решения задачи Коши для ду 1-ого порядка.
- •3.Геометрическая интерпретация ду 1-ого порядка. Метод изоклин.
- •4.Задача Коши для ду n-ого порядка. Общее решение, частное решение, особое решение ду n-ого порядка.
- •5. Уравн. С разделяющимися переменными
- •6. Однородные ду 1-ого порядка
- •7.Линейные ду 1-ого порядка (метод подстановки Бернулли, метод вариации произвольной постоянной Лагранжа).
- •8.Уравнение Бернулли
- •9. Уравнение в полных дифференциалах.
- •10.Дифференциальные уравнения высших порядков. Теорема о существовании и единственности решения. Задача Коши. Приемы понижения порядка (на примерах ду 2-ого порядка).
- •13.Линейные однородные ду n-ого порядка с постоянными коэффициентами. Теорема о структуре общего решения линейного однородного ду n-ого порядка с постоянными коэффициентами.
- •14.Линейные неоднородные ду 2-ого порядка. Теорема о структуре общего решения неоднородного ду.
- •15.Метод вариации произвольных постоянных (Лагранжа) для отыскания частного решения линейного неоднородного ду 2-ого порядка.
- •16. Линейные неоднородные ду с постоянными коэффициентами и специальной правой частью.
- •17. Системы ду. Нормальные системы. Теорема о существовании и единственности решения нормальной системы ду. Задача Коши для системы ду.
- •19.Системы линейных однородных ду с постоянными коэффициентами. Характеристическое уравнение системы ду.
- •20. Решение системы линейных однородных ду с постоянными коэффициентами. Случай действительных различных корней характеристического уравнения.
- •21. Пространство элементарных событий. Алгебра событий.
- •22. Вероятность события. Классическое, статистическое определение вероятности. Геометрическая вероятность.
- •23. Теоремы сложения вероятностей несовместных и совместных событий.
- •24. Условная вероятность. Теорема умножения вероятностей. Вероятность появления хотя бы одного события.
- •25. Формула полной вероятности. Формула Байеса.
- •26. Повторение испытаний. Схема испытаний Бернулли. Биномиальное распределение вероятностей. Наивероятнейшее число появлений события в независимых испытаниях.
- •27. Распределение Пуассона. Локальная предельная теорема Муавра-Лапласа.
- •28. Интегральная предельна теорема Муавра-Лапласа. Отклонение относительной частоты от постоянной вероятности в независимых испытаниях.
- •Понятие случайной величины. Функция распределения случайной величины, ее свойства.
- •Дискретные случайные величины. Построение функции распределения.
- •Непрерывные случайные величины. Плотность вероятности случайной величины, ее свойства.
- •Числовые характеристики случайных величин. Математическое ожидание дискретных и непрерывных случайных величин. Свойства.
- •33.Числовые характеристики случайных величин. Дисперсия дискретных и непрерывных случайных величин. Свойства.
- •34.Числовые характеристики случайных величин. Мода, медиана, начальные и центральные моменты, асимметрия, эксцесс случайных величин.
- •35.Равномерный закон распределения случайных величин.
- •36.Биномиальный закон распределения случайных величин.
- •40.Закон больших чисел. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли.
- •46.Линии регрессии. Корреляция.
- •47.Определение характеристик случайных величин на основе опытных данных. Выборка и ее характеристики. Частота и относительная частота.
- •48.Эмпирическая функция распределения. Полигон и гистограмма.
- •51.Проверка статистических гипотез. Критерии согласия Пирсона и Колмогорова.
- •52.Понятие о двумерных выборках и выборочных оценках двумерных св.
- •55. Временные ряды и прогнозирование. Автокорреляционная функция. Авторегрессионная модель.
35.Равномерный закон распределения случайных величин.
Плотность вероятности равномерного распределения сохраняет на интервале (a, b) постоянное значение, вне этого интервала плотность вероятности равна нулю. Исходя из основного свойства плотности вероятности,
f(x) = 1/(b-a) на интервале (a;b).
Интегральную функцию распределения (вероятность того, что с.в. примет значение меньшее, чем x) находим как интеграл от -∞ до x от плотности вероятности: F(x) = (x-a)/(b-a)
Графики плотности вероятности и функции равномерного распределения:
Математическое ожидание равномерного распределения: M(X) = (a + b)/2
Дисперсия равномерного распределения: D(X) = (b - a)2/12
Среднее квадратичное отклонение равномерного распределения: σ(X) = (b - a)/(2√3)
36.Биномиальный закон распределения случайных величин.
Биномиальным называют закон распределения дискретной случайной величины X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события постоянна. Вероятности pi вычисляют по формуле Бернулли
Для биномиального распределения: математическое ожидание M(X) = np,
дисперсия D(X) = npq,
мода np-q ≤ Mo ≤ np+p,
коэффициент асимметрии As = (q - p)/√npq,
коэффициент эксцесса Ex = (1 - 6pq)/npq
В пределе при n→∞ биномиальное распределение по своим значениям приближается к нормальному с параметрами a=np и σ=√npq
В пределе при n→∞ и при p→0 биномиальное распределение превращается в распределение Пуассона с параметром λ=np.
Пример 3.1
Построить ряд распределения числа попаданий мячом в корзину при трех бросках, если вероятность попадания при одном броске равна 0,6. Найти среднее число попаданий и дисперсию.
Решение
Случайная величина Х – число попаданий в корзину при трёх бросках. Соответствующие вероятности найдём по формуле Бернулли.
Искомый закон распределения:
Контроль: 0,064 + 0,288 + 0,432 + 0,216 = 1
Математическое ожидание:
М(Х) = Σ хipi = 0 · 0,064 + 1 · 0,288 + 2 · 0,432 + 3 · 0,216 = 1,8
Или: М (Х) = np = 3 · 0,6 = 1,8
Дисперсия: D(X) = Σ х2ipi – (М(Х))2 = 02 · 0,064 + 12 · 0,288 + 22 · 0,432 + 32 · 0,216 – 1,82 = 0,72
Или: D (X) = npq = 3 · 0,6 · 0,4 = 0,72
Среднее квадратическое отклонение:
σ(Х) = √D(X) ≈ 0,85
Коэффициент асимметрии As = (q - p)/√npq = (0,4 - 0,6)/√3·0,6·0,4 ≈ -0,2357,
Коэффициент эксцесса Ex = (1 - 6pq)/npq = (1 - 6·0,6·0,4)/(3·0,6·0,4) ≈ -0,61111