Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpora po matem.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
4.55 Mб
Скачать

1.Задачи, приводящие к дифференциальным уравнениям (ду). Основные сведения о ду (обыкновенные ду, оду n-ого порядка, решение ду на интервале).

ДУ – ур-ния содержащие неизвестные функции или вектор функции под знаком производной или дифференциала.

  1. dx/dt = -kx - уравнение радиоактивного распада, где k-постоянная распада, x- кол-во неразложившегося вещ-ва в момент времени t, dx/dt – скорость распада,которая пропорциональна кол-ву распада.

  2. m*(d2r/dt2) = F(t,r,dr/dt) - ур-ние движения точки, массы m под влиянием силы F, зависящей от времени, положения точки радиус вектора и ее скорости.

  3. ð2u/ ðx2 + ð2u/ ðy2+ ð2u/ ðz2 = 4πρ(x,y,z) - ур-ние Пуассона, которому удовлетворяет потенциал и (x,y,z) электростатического поля, ρ-плотность зарядов.

ДУ – ур-ние относительно неизвестной функции и ее производных различных порядков. Порядком ДУ называется порядок старшей производной входящей в это уровнение.

ДУ называется обыкновенным, если искомая функция зависит от одной переменной. (пример 1,2)Если искомая функция зависит от нескольких переменных, то ДУ называются ур-ниями с частными производными (пример 3).

Обыкновенные ДУ(ОДУ) n-ого порядка наз. ур-ния вида:F(x,y,y`,y``,…yn)=0, (1)

Где, x-независимая переменная, y=y(x) –зависимая от x-искомая ф-ия переменной x, y`,y``,…yn -производная, F( ) –заданная ф-ия своих аргументом,может не содержать несколько своих элементов,но должна зависить от yn.

Если ур-ние (1) разрешимо относительно производной n-ого порядка, то можно представить: yn = f(x, y,y`,y``,…yn-1). (2)

Ф-ия y=φ(x) определенная и непрерывная дифференцируемая n раз на (a,b) назыв. Решением ур-ния (1) в этом интервале если она обращает указанное ур-ние в тождество: F(x, φ(x), φ`(x),… φn(x)) =0, для всех х принадлеж. интервалу (a,b).

2.Задача Коши для ду 1-ого порядка. Теорема существования и единственности решения задачи Коши для ду 1-ого порядка.

Ур-ния вида: y`=f(x,y) имеет бесконечное число решений. Из множества решений можно выделить одно частное решение с помощью задания начального условия Коши: y(x0)=y0 , (x0, y0)€D (*)

Задача отыскания частного решения ДУ y`=f(x,y)удовл. нач.усл.(*) назыв задачей Коши для этого ур-ния с геометрической точки зрения задача Коши для ДУ y`=f(x,y) означает следующее: требуется из множества интегральных кривых выделить ту, которая проходит через заданную точку M0(x0, y0) €D.

Теорема (о существовании и единственности решения задачи Коши). Дусть ф-ия f(x,y) определена, непрерывна и имеет непрерывные частные производные в области D(df/dy), тогда найдется интервал (x0-δ, x0+δ) на котором существует единственное решение y= φ(x) ДУ y`=f(x,y) удовл. условиям y(x0)=y0 .

Если условия теоремы выполнены и имеются 2 решения: y= φ1(x) и y= φ2(x) ур-ния y`=f(x,y) такие, что φ1(x0)= φ2(x0), то существует такой интервал (x0-δ, x0+δ) в каждой точке которого φ1(x)= φ2(x).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]