
- •1.Классификация электротехнических материалов.
- •2.Классификация диэлектрических материалов по агрегатному состоянию.
- •3.Классификация диэлектрических материалов по свойствам.
- •4.Жидкие диэлектрики. Нефтяные электроизоляционные масла. Способ получения. Применение. Достоинства и недостатки.
- •6.Пробой диэлектриков. Виды пробоев. Напряжение пробоя, электрическая прочность.
- •8. Пробой газообразных диэлектриков.
- •9. Пробой твердых диэлектриков. Зависимость электрической прочности твердых диэлектриков от различных факторов. Способ определения электрической прочности жидких диэлектриков
- •10. Диэлектрические потери. Виды диэлектрических потерь. Угол диэлектрических потерь.
- •11 Билет Тепловые свойства диэлектриков.
- •13. Механические свойства диэлектриков.
- •14. Понятие “быстрой поляризации”. Виды.
- •15. “Замедленная поляризация”. Виды.
- •Использование смол в лакокрасочной промышленности
- •30.Электротехническая керамика. Способы получения, классификация применение, достоинства и недостатки.
- •31.Слюда и слюдяные материалы. Способы получения, применение, достоинства и недостатки.
- •32.Основные виды кристаллических решеток. Сингонии.Кристаллизация. Аллотропия.
- •33.Дефекты строения кристаллических решеток.
- •34. Металлические сплавы. Классификация по способу получения.
- •36. Стали. Свойства, применение, достоинства и недостатки.
- •37.Чугуны.Свойства, применение, достоинства и недостатки
- •38. Сплавы цветных металлов. Свойства, применение, достоинства и недостатки.
- •39. Виды термической обработки металлов и сплавов.
- •40. Химико-термическая обработка металлов и сплавов.
- •41. Виды обработок металлов и сплавов давлением.
- •42. Дефекты обработок металлов.
- •44. Проводниковые материалы высокой проводимости. Свойства, применение, достоинства и недостатки.
- •47. Неметаллические проводники.
- •48. Полупроводники. Свойства, применение, достоинства и недостатки.
- •49. Собственные и примесные полупроводники.
- •50. Материалы, обладающие свойствами полупроводников (простые элементы).
- •51. Материалы, обладающие свойствами полупроводников (бинарные соединения).
- •52. Методы определения типа электропроводности полупроводников. Метод Холла.
- •54. Гальваномагнитные эффекты в полупроводниках.
- •57. Процессы, происходящие при перемагничивании
- •58. Магнитные материалы специализированного назначения
- •59. Магнитомягкие материалы. Свойства, применение.
- •Низкочастотные магнитомягкие материалы
- •Высокочастотные магнитомягкие материалы
- •60. Магнитотвердые материалы. Свойства, применение
- •Основные параметры
- •Литые сплавы на основе железа, никеля и алюминия, а также железа, никеля, алюминия и кобальта, легированные медью, титаном, ниобием.
- •2. Сплавы на основе благородных металлов
- •Порошковые магнитотвердые материалы
- •Металлокерамические магниты
- •Металлопластические магниты
- •Магнитотвердые ферриты
8. Пробой газообразных диэлектриков.
Пробой газообразных диэлектриков имеет чисто электрическую форму. Механизм пробоя газов рассмотрим на примере пробоя воздуха.
В результате воздействия внешнего ионизирующего излучения воздух всегда содержит некоторое количество свободных ионов и электронов, которые, так же как и нейтральные молекулы, находятся в тепловом (хаотическом) движении. При приложении электрического поля эти заряженные частицы дополнительно приобретают направленное движение. Важная роль при пробое, особенно в начальной стадии, принадлежит электронам как частицам, имеющим намного большую подвижность, чем ионы (см. гл. 3.1). Кроме того, при электронной ударной ионизации (см.ниже) отщепляемый от молекулы электрон отталкивается от нее ионизирующим электроном, облегчая условие ионизации.
В упрощенном виде механизм пробоя газов сводится к следующему. Свободный электрон (обычно это п свободных электронов) под действием приложенного электрического поля, двигаясь по направлению к аноду, приобретает добавочную энергию W> равную для однородного поля
W=e*лямда*E, (5.2)
где е — заряд электрона; лямда — средняя длина свободного пробега электрона (участок пути, пройденный электроном от столкновения с одной молекулой до столкновения с другой молекулой); Е — напряженность электрического поля (фактически это градиент потенциала поля на участке X).
Если в момент столкновения электрона с нейтральной молекулой его добавочная энергия W будет равна или больше энергии ионизации Щ данной молекулы (W> W„), то произойдет ее расщепление на положительный ион и электрон, т.е. произойдет электронная ударная ионизация. Значения энергии однократной ионизации атомов химических элементов лежат в относительно широких пределах: от 3,86 (Cs) до 24,58 (Не) эВ, у молекулярных газов — в более узких пределах, а у основных воздухообразующих газов в еще более узких пределах: от 12,5 (02) до 15,8 (N2) эВ. Ниже приводятся значения энергии однократной ионизации некоторых молекулярных газов:
Химический N2 Н2 С02 СН4 СО Н20 С2Н6 02 NH3 N02 NO состав газа
Энергия
ионизации, эВ 15.8 15,8 14,4 14,5 14,1 13,0 12,8 12,5 11,2 11 9,5
Энергия ионизации с каждым последующим электроном, отрываемым от молекулы (атома), возрастает, особенно значительно при переходе на последующий электронный слой (см.гл.1.4). Поэтому энергетически выгоден однократный акт ионизации молекулы (атома), а не многократный.
После первого акта электронной ударной ионизации уже два (2п) электрона, разгоняясь в поле, будут ионизировать молекулы. Если в момент их «соударения» с молекулами W > И^и, то образуются четыре свободных электрона, при последующем акте — 8, затем 16 и т.д. В направлении анода со скоростью, примерно равной (1—3)-106 м/с, начнет прорастать электронная лавина аналогично снежной лавине с гор (рис. 5.2, АБ). Электронная ударная ионизация для каждого газообразного диэлектрика начинается при определенной напряженности поля, величина которой зависит от давления, температуры и частоты напряжения. Эта напряженность поля называется начальной напряженностью.
Кроме электронной ударной ионизации, важная роль при пробое принадлежит фотоионизации. Если при соударении электрона с молекулой Wэлектрона окажется меньше, чем (Ю данной молекулы, то она не ионизирует. Получив добавочную энергию W, молекула переходит в возбужденное состояние (один из ее валентных электронов перейдет на более высокий энергетический уровень). Это состояние молекулы неустойчивое, и,спустя примерно 10"8 с, электрон возвратится на прежний энергетический уровень, а молекула излучит квантэнергии в виде фотона. Фотоны, двигаясь со скоростью на два порядка большей (сф « 3* 10s м/с), чем электронные лавины, значительно опережают последние. «Столкнувшись» с нейтральной молекулой, фотон ее ионизирует, если энергия, приобретенная молекулой, будет больше или равна ее энергии ионизации Wu. Этот процесс называется фотоионизацией. Если энергия фотона окажется меньше Wu молекулы, то фотоионизации не произойдет. Получив энергию фотона, молекула перейдет в возбужденное состояние. В следующий момент молекула возвратится в нормальное состояние, излучив фотон. Этот процесс может повториться многократно, пока фотон не поглотится молекулой воздуха, имеющей WM9 равную или меньшую энергии фотона.
Образовавшийся в результате фотоионизации электрон, двигаясь к аноду и сталкиваясь с нейтральной молекулой, ионизирует ее, порождая новую, «дочернюю» лавину, находящуюся далеко впереди основной лавины (см. рис. 5.2). Фотоны, испускаемые лавинами, далеко вперед обгоняя их, зарождают все новые и новые дочерние лавины. Основная и дочерние лавины, двигаясь к аноду, растут, догоняют друг друга, сливаются и образуют электроотрицательный стример — цепочку электронных лавин, слившихся в единое целое (см. рис. 5.2, СД). При этом если электронные лавины распространяются прямолинейно, то стример — зигзагообразно.
Одновременно с ростом электроотрицательного стримера начинает образовываться поток из положительных ионов, концентрация которых особенно велика вблизи анода. Положительные ионы движутся в обратном направлении, образуя электроположительный стример (рис. 5.3), который перекрывает пространство между анодом и катодом. Подходя к катоду, положительные ионы, ударяясь о его поверхность, образуют светящееся катодное пятно, излучающее электроны — «вторичные» электроны. Происходит холодная эмиссия электронов из катода (см. гл. 12.3.2), Положительный стример, заполняясь вторичными электронами и электронами, образующимися в результате электронной ударной ионизации и фотоионизации, превращается в сквозной канал газоразрядной плазмы. Электропроводность этого канала очень высока, и по нему устремляется ток короткого замыкания /ю.
Образование плазменного газоразрядного канала фактически и есть пробой газов. Возникновение — следствие пробоя. В зависимости от величины /кз пробой проявляется в виде искры или электрической дуги.
Из вышесказанного, следует, что электрическая прочность газообразных диэлектриков зависит от значений Wu и Wy при этом W, приобретаемая электронами под действием поля, в свою очередь, зависит от Е и X (см. формулу (5.2)). Чем больше энергия ионизации WH молекул диэлектрика и меньше средняя длина свободного пробега электрона X, тем выше электрическая прочность. Значения Жи и X зависят от природы диэлектрика, а X, кроме того, и от его состояния (температуры, давления). Поэтому введение в состав молекул газообразных диэлектриков атомов электроотрицательных элементов (F, С1) приводит к возрастанию Жи газа, а увеличение давления и снижение температуры — к уменьшению X; Епр газа при этом возрастает.