Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все ответы по Материаловедению.docx
Скачиваний:
18
Добавлен:
01.03.2025
Размер:
263.61 Кб
Скачать

42. Дефекты обработок металлов.

Дефекты, возникающие при термической обработке

От неправильного проведения закалки в деталях и инструменте могут возникнуть различные дефекты.

, то часть феррита не превратится в аустенит. После охлаждения аустенит превратится в мартенсит, а феррит, не перешедший при нагреве в аустенит, останется в закаленной стали. В результате получится структура, состоящая из мартенсита и феррита (рис. 69, а). Феррит, имеющий низкую твердость (НВ 80), находясь вместе с мартенситом, будет снижать общую твердость закаленной стали. Этот дефект можно исправить, для чего недогретую сталь отжигают, а затем проводят нормальную закалку.

Перегрев получается в том случае, если сталь была нагрета до температуры намного выше критической или при оптимальной температуре была дана очень большая выдержка. При перегреве происходит рост зерна аустенита, а после закалки образуется крупноигольчатый мартенсит (рис. 69, б). Механические свойства перегретой стали низкие (чрезмерная хрупкость). Сталь, перегретую при закалке, отжигают (или нормализуют) и вновь закаливают.

Пережог получается в том случае, если сталь была нагрета до температуры, близкой к температуре начала плавления. Пережог характеризуется оплавлением и в связи с этим окислением металла по границам зерна (рис. 69, в), поэтому сталь становится очень хрупкой; пережог является неисправимым браком.

Закалочные трещины являются результатом резкого охлаждения или нагрева вследствие возникающих при этом внутренних напряжений как термических, так и структурных; перегрева; неравномерного охлаждения; наличия в деталях острых углов, глубоких рисок и т. п., в которых при закалке из-за концентрации внутренних напряжений создаются условия для образования трещин; вылеживания закаленных деталей, если в них отпуском не сняты (частично) внутренние напряжения; наличия в стали неметаллических включений, раковин и других дефектов.

Структурные изменения, происходящие в металле при термической обработке, вызывают изменение объема {деформацию), а неравномерность охлаждения — искажение внешней формы (коробление). Например, наибольший объем из структур имеет мартенсит, поэтому при закалке с получением мартенситной структуры будет увеличиваться объем детали. Коробление может происходить без изменения объема (под влиянием термических напряжений) и с изменением объема (под влиянием структурных напряжений). Для первого случая характерным является деформация деталей из железа после многократного нагрева ниже температуры в критической точке и охлаждения; форма деталей будет приближаться к форме шара (рис. 70, а). Для второго случая характерным является деформация стальных деталей после многократной закалки на мартенсит (рис. 70, б). У детали кубической формы грани выгибаются к центру. У цилиндрической детали длина увеличивается, а у детали в форме диска толщина уменьшается. Таким образом, форма различных деталей под влиянием структурных напряжений изменяется иначе, чем под влиянием термических напряжений.

Дефекты обработки давлением

Трещины поверхностные и внутренние, разрывы появляются в поковке (штамповке, прокате) из-за значительных напряжений в металле при деформации. Растягивающие внутренние напряжения могут привести к появлению разрывов и трещин металла в зонах, ослабленных дефектами слитка, а иногда к разрушению зон, не пораженных дефектами. Следует отметить, что при обработке давлением металл неоднократно подвергается нагреву и охлаждению, что приводит к возникновению термических напряжений, способствующих образованию внутренних разрывов и трещин.

При холодной объемной штамповке из-за малой пластичности исходных материалов на поверхности обрабатываемых деталей возникают скалывающие трещины, распространяющиеся под углом 45° к направлению действующего усилия.

Риски появляются на поверхности проката в виде мелких открытых царапин глубиной 0,2—0,5 мм в результате попадания мелких частиц на валки при прокате или износа матрицы при прессовании.

Волосовины являются результатом деформации мелких неметаллических включений и газовых пузырей. Эти дефекты имеют вид тонких прямых линий длиной от долей миллиметра до нескольких сантиметров и расположенных на поверхности и в подповерхностном слое металла. Волосовины встречаются во всех конструкционных сталях.

43. Проводники, их свойства, классификация.

Проводниками называются вещества, внутри которых в случае электростатического равновесия электрическое поле равно нулю, т.е. некомпенсированные заряды проводников локализуются в бесконечно тонком поверхностном слое, а если электрическое поле отлично от нуля, то в проводнике возникает электрический ток.

Проводниковые свойства проявляют как твердые тела, так и жидкости, а при соответствующих условиях и газы.

В электротехнике из твердых проводников наиболее широко используются металлы и их сплавы, различные модификации проводящего углерода и композиции на их основе.

Металлические проводниковые материалы подразделяются на материалы высокой проводимости и сплавы высокого сопротивления. Металлы высокой проводимости используются в тех случаях, когда необходимо обеспечить минимальные потери передаваемой по ним электрической энергии, а сплавы высокого сопротивления, наоборот, в тех случаях, когда необходима трансформация электрической энергии в тепловую.

К жидким проводникам относятся расплавы и электролиты. Если при прохождении тока через жидкие проводники на электродах не происходит выделение продуктов электролиза, то они относятся к проводникам первого рода. Расплавы ионных кристаллов и электролиты относятся к проводникам второго рода, так как при прохождении через них тока происходит перенос вещества, а на электродах выделяются продукты электролиза.

Газы и парообразные вещества становятся проводниками лишь в определенных диапазонах значений давления, температуры и напряженности электрического поля. Близка к газам по своему агрегатному состоянию особая проводящая среда — плазма.

К особой группе проводящих материалов относятся сверхпроводники.

Современная теория проводников основывается на постулатах квантовой механики. В рамках этой теории предполагается, что при отсутствии внешних воздействий (электрические и магнитные поля, градиент температуры) система подвижных электрических зарядов в проводниках описывается равновесной функцией распределения. Реакция на любое внешнее воздействие, нарушающее равновесное состояние подвижных зарядов, может быть описана с помощью неравновесной функции распределения, конкретный вид которой зависит от типа воздействия и определяется на основе решения кинетического уравнения Больцмана. Количественная связь между внешним воздействием и реакцией на него подвижных носителей заряда описывается с помощью кинетических коэффициентов, из которых наиболее важную практическую роль играют коэффициент электрической проводимости (выражает связь между напряженностью электрического поля в проводнике и плотностью тока) и коэффициент тепловой проводимости (выражает связь между разностью температур на единичной длине проводника и тепловым потоком). Математически эти явления описываются законами Ома и Фурье: , где Е — напряженность электрического поля, В/м; J — плотность тока, А/м; ω — плотность теплового потока, Вт/м; ΔT — разница температур на единичном участке длины проводника, К/м; γ — коэффициент электрической проводимости (удельная электрическая проводимость), См/м; χ — коэффициент теплопроводности, Вт/(м · К).