Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория вероятностей.docx
Скачиваний:
7
Добавлен:
01.03.2025
Размер:
315.4 Кб
Скачать

16.Дисперсия дсв

Дисперсией D(X) СВ называют матем. ожидание квадрата ее отклонения от мат. ожидания, т.е. D(X)=M(X-M(X))2. Выбор дисперсии, определяемой по предыдущ. формуле в кач-ве хар-ки рассеивания значения СВ оправдывается тем, что дисперсия обладает св-вом минимальности. Это означает, что дисп. равна . Если X – это дискретн. СВ, то D(X)= . Если X – это непрерывн. СВ, принимающ. значения отрезка [a,b], то D(X)= f(x)dx, где f(x) – функция плотности распределения непрерывн. СВ X. D(X) имеет размерность квадрата СВ, что не всегда удобно, поэтому в кач-ве показателя рассеивания используют также величину . Ее называют средним квадратич. отклонением. Основн. св-ва дисперсии: 1) Дисперс. алгебраич. суммы 2-ух независим. СВ X и Y равна сумме дисперсий этих величин, т.е. D(X Y)=D(X)+D(Y). Доказ-во: D(X Y)= M[(X Y) – M(X Y)]2 = M((X Y) – (M(X) M(Y)))2 = M((X – M(X) (Y – M(Y)))2 = M[(X – M(X))2 2(X – M(X))(Y – M(Y)) + (Y – M(Y))]2 = M(X – M(X))2 2M(X – M(X))M(Y – M(Y)) + M(Y – M(Y))2 = D(X) + 0 + D(Y) = D(X)+D(Y); 2) Дисперсия постоян. величины равна 0, т.е. D(C)=0. Доказ-во: Т.к. M(C)=C, то D(C)= M(C – M(C))2 = M(C – C)2 = M(0) = 0; 3) Постоян. множитель С можно выносить за знак дисперсии, возводя его в квадрат, т.е. D(CX)= C2D(X). Доказ-во: D(C)= M(CX – M(CX))2 = M(CX – CM(X))2 = M(C(X – M(X))2) = M(C2(X – M(X))2) = M(C2)M(X – M(X))2 = C2D(X); 4) Дисперсия СВ Х равна разности между мат. ожиданием квадрата СВ и квадратом ее мат. ожидания, т.е. D(X) = M(X2) – (M(X))2. Доказ-во: По определ. дисперсии D(X) = M(X – M(X))2 = M(X2 – 2X M(X) + (M(X))2) = M(X2) – M(2X M(X)) + M(M(X))2 = M(X2) – 2M(X) M(X) + (M(X))2 = M(X2) – (M(X))2. Замечание: При решении практич. задач для вычисления удобнее использовать формулу св-ва (4). Для дискретн. СВ эта формула будет иметь вид: D(X) = - (M(X))2. Для непрерывн. СВ: D(X) = - (M(X))2.

Дисперсия числа появлений события в независимых испытаниях

Эксперимент повторяется n раз, А- событие.

Р(А)=р

Р(неА)=q=1-p

X-число появлений события А в n-независимых испытаниях.

М(Х)=np

D(X)=?

Теорема: дисперсия числа появления события n-независимых испытаний равно npq.

D(X)=npq, где р- вероятность появления события;р=Р(А);q=Р(неА)

Док – во:

Х=Х12+…+Хn ,где Xi- появление (непоявление) события А(i изменяется от 1 до n) в конкретном i-том эксперименте.

Хi 0 1

P q p

D(X)=D(X1)+D(X2)+…+D(Xn)

M(X12)= 0*q+1*p=p

D(X1)=M(X12)-(M(X1))2=p-p2=p(1-p)=pq=>D(X)=npq

17.Функция распределения вероятностей случайной величины

Описание распределения набором вероятностей не очень удобно: слишком много существует борелевских множеств. Мы описали дискретные распределения таблицей распределения, абсолютно непрерывные — плотностью распределения. Попробуем поискать какой-нибудь универсальный способ описать любое возможное распределение.

Можно поставить вопрос иначе: распределение есть набор вероятностей попадания в любые борелевские множества на прямой. Нельзя ли обойтись знанием вероятностей попадания в какой-нибудь меньший набор множеств на прямой? Борелевская -алгебра порождается интервалами (равно как и лучами ), поэтому можно ограничиться только вероятностями попадания в такие лучи для всех . А уже с их помощью можно будет определить и вероятность попасть в любое борелевское множество.

Замечание. Можно с таким же успехом ограничиться набором вероятностей попадания в интервалы , или в , или в .

Определение. Функцией распределения случайной величины называется функция , при каждом равная вероятности случайной величине принимать значения, меньшие  :

Перечислим основные дискретные и абсолютно непрерывные распределения и найдём их функции распределения.

Если функция распределения F (x) непрерывна, то случайная величина  называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины p (x), которая связана с функцией распределения F (x) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .