
- •Закон сохранения массы веществ
- •Закон кратных отношений
- •Закон объемных отношений
- •Строение атома
- •Квантовые числа электронов
- •Полная электронная формула элемента
- •Химическая связь
- •Ковалентная связь
- •Ионная связь
- •Водородная связь
- •Металлич связь
- •Химическое равновесие
- •Способы смещения равновесия
- •Растворы
- •Ненасыщенные, насыщенные и перенасыщенные растворы
- •Растворение как физико-химический процесс
- •Растворимость
- •Концентрация растворов
- •Ионные реакции
- •Условия необратимости реакций ионного обмена
- •Ионное произведение воды
- •PH раствора
- •Теория электролитической диссоциации электролиты и неэлектролиты
- •Степень диссоциации. Константа диссоциации
- •Степень окисления
- •Электрохим процессы Ряд напряжений
- •Электролиз
Электрохим процессы Ряд напряжений
+nē
Окисленная Восстановленная
Форма форма
-nē
Каждая такая полуреакция характеризуется стандартным окислительно-восстановительным потенциалом Е0, (размерность - вольт, В). Чем больше Е0, тем сильнее окислительная форма как окислитель и тем слабее восстановленная форма как восстановитель, и наоборот.
За точку отсчета потенциалов принята полуреакция: 2H+ + 2ē => H2, для которой Е0 =0
Для полуреакций Mn+ + nē => M0, Е0 называется стандартным электродным потенциалом. По величине этого потенциала металлы принято располагать в ряд стандартных электродных потенциалов (ряд напряжений металлов):
Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Ga, Fe, Cd, In, Tl, Co, Ni, Sn, Pb, H , Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au
Ряд напряжений характеризует химические свойства металлов:
1.Чем левее расположен металл в ряду напряжений, тем сильнее его восстановительная способность и тем слабее окислительная способность его иона в растворе (т.е. тем легче он отдает электроны (окисляется) и тем труднее его ионы присоединяют обратно электроны).
2. Каждый металл способен вытеснять из растворов солей те металлы, которые стоят в ряду напряжений правее его, т.е. восстанавливает ионы последующих металлов в электронейтральные атомы, отдавая электроны и сам превращаясь в ионы.
3.Только металлы, стоящие в ряду напряжений левее водорода (Н), способны вытеснять его из растворов кислот (например, Zn, Fe, Pb, но не Сu, Hg, Ag).
Гальванические элементы
Каждые два металла, будучи погруженными в растворы их солей, которые сообщаются между собой посредством сифона, заполненного электролитом, образуют гальванический элемент. Пластинки металлов, погруженные в растворы, называются электродами элемента.
Если соединить наружные концы электродов (полюсы элемента) проволокой, то от металла, у которого величина потенциала меньше, начинают перемещаться электроны к металлу, у которого она больше (например, от Zn к Pb). Уход электронов нарушает равновесие, существующее между металлом и его ионами в растворе, и вызывает переход в раствор нового количества ионов - металл постепенно растворяется. В то же время электроны, переходящие к другому металлу, разряжают у его поверхности находящиеся в растворе ионы - металл выделяется из раствора. Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом. В свинцово-цинковом элементе цинковый электрод является анодом, а свинцовый - катодом.
Таким образом, в замкнутом гальваническом элементе происходит взаимодействие между металлом и раствором соли другого металла, не соприкасающимися непосредственно друг с другом. Атомы первого металла, отдавая электроны, превращаются в ионы, а ионы второго металла, присоединяя электроны, превращаются в атомы. Первый металл вытесняет второй из раствора его соли. Например, при работе гальванического элемента, составленного из цинка и свинца, погруженных соответственно в растворы Zn(NO3)2 и Pb(NO3)2 у электродов происходят следующие процессы:
Zn - 2ē => Zn2+
Pb2+ + 2ē=> Pb
Суммируя оба процесса, получаем уравнение Zn + Pb2+ => Pb + Zn2+, выражающее происходящую в элементе реакцию в ионной форме. Молекулярное уравнение той же реакции будет иметь вид:
Zn + Pb(NO3)2 => Pb + Zn(NO3)2
Электродвижущая сила гальванического элемента равна разности потенциалов двух его электродов. При определении его всегда вычитают из большего потенциала меньший. Например, электродвижущая сила (Э.д.с.) рассмотренного элемента равна:
Э.д.с. = -0,13-(-0,76)= 0,63 v
EPb EZn
Такую величину она будет иметь при условии, что металлы погружены в растворы, в которых концентрация ионов равна 1 г-ион/л. При других концентрациях растворов величины электродных потенциалов будут несколько иные. Их можно вычислить по формуле:
E = E0 + (0,058 / n) ∙ lgC
где E - искомый потенциал металла (в вольтах)
E0 - его нормальный потенциал
n - валентность ионов металла
С - концентрация ионов в растворе (г-ион/л)