- •Ответы на экзаменационные вопросы по курсу «Микроэкономика II» Оглавление
- •Вопрос 1:Аксиоматика теории потребительского выбора.
- •Вопрос 2:Ординалистский подход в теории потребительского выбора.
- •Вопрос 3: Кривые безразличия. Предельная норма замещения.
- •Вопрос 4: Оптимум потребителя в ординалистской концепции потребительского выбора.
- •Вопрос 5: Кривая «цена-потребление» и кривая спроса.
- •Вопрос 6: Кривые «доход-потребление» и кривые Энгеля.
- •Вопрос 7: Эффекты дохода и замещения по Слуцкому.
- •Вопрос 8: Эффекты дохода и замещения по Хиксу.
- •Вопрос 9: Уравнение Слуцкого.
- •Вопрос 10: Компенсированный спрос.
- •Вопрос 11: Перекрестные эффекты дохода и замещения.
- •Вопрос 12: Компенсирующая и эквивалентная вариации дохода.
- •Вопрос 13: Взаимосвязь между различными показателями выгоды потребителя.
- •Вопрос 14: Концепция выявленных предпочтений. Роль концепции выявленных предпочтений в теории потребительского выбора.
- •Вопрос 15: Выявленные предпочтения и анализ индексов реального дохода и цен.
- •Вопрос 16: Индивидуальный и рыночный спрос.
- •Вопрос 17:Ценовая эластичность спроса.
- •Вопрос 18: Факторы, влияющие на эластичность спроса по цене.
- •Вопрос 19: Эластичность спроса по доходу. Обобщенный закон Энгеля.
- •Вопрос 20: Уравнение Слуцкого в коэффициентах эластичности.
- •Вопрос 21: Перекрестная эластичность спроса по цене.
- •Вопрос 22: Потребительский выбор с учетом начального запаса.
- •Вопрос 23: Уравнение Слуцкого с учетом начального запаса.
- •Вопрос 24: Производственная функция.
- •Вопрос 25: Свойства производственной функции в коротком периоде.
- •Вопрос 26: Предельная норма технического замещения.
- •Вопрос 27: Эффект масштаба.
- •Вопрос 28: Производственная функция и технический прогресс.
- •Вопрос 29: Свойства производственной функции Кобба-Дугласа.
- •Вопрос 30: Экономические и бухгалтерские издержки. Невозвратные издержки.
- •Вопрос 31: Экономически эффективные способы производства. Траектория расширения производства и условный спрос на ресурсы.
- •Вопрос 32: Концепция выявленной минимизации издержек.
- •Вопрос 33: Издержки в долгосрочном периоде.
- •Вопрос 34: Издержки в краткосрочном периоде.
- •Вопрос 35: Взаимосвязь краткосрочных и долгосрочных издержек.
- •Вопрос 36. Максимизация прибыли и спрос на ресурсы. Линии изоприбыли.
- •Вопрос 37. Концепция выявленной максимизации прибыли.
- •Вопрос 38. Максимизация выпуска и спрос на ресурсы.
- •Вопрос 39. Предложение конкурентной фирмы в коротком и длительном периодах. Квазипостоянные издержки.
- •Вопрос 40. Излишек производителя.
- •Вопрос 41. Предложение конкурентной отрасли в коротком и длительном периоде.
- •Вопрос 42. Рыночная структура совершенной конкуренции и экономическая эффективность.
- •Вопрос 43. Монополия как рыночная структура. Социальные издержки монопольной власти.
- •Вопрос 44. Выбор монополиста с несколькими заводами.
- •Вопрос 45. Монопольная власть и ее измерение. Регулирование монополии.
- •Вопрос 46. Влияние "потолка" цены на выбор монополиста.
- •Вопрос 47. Влияние налогообложения на выбор монополиста.
- •Вопрос 48. Естественная монополия и ее регулирование.
- •Вопрос 49: Условия существования и цели ценовой дискриминации.
- •Вопрос 50: Виды ценовой дискриминации.
- •Ценовая дискриминация первой степени
- •Ценовая дискриминация второй степени
- •Ценовая дискриминация третьей степени
- •Расчет оптимальных цен и объемов выпуска в случае ценовой дискриминации
- •Вопрос 51: Особенности ценовой дискриминации второй степени.
- •Вопрос 52: Ценообразование по схеме двойного тарифа.
- •Вопрос 53: Предположительные вариации как основа моделей олигополии.
- •Вопрос 54: Дуополия Курно.
- •Вопрос 55: Дуополия Стэкльберга.
- •Вопрос 56: Дуополия Бертрана.
- •Кривая спроса дуополиста Бертрана
- •Вопрос 57: Картель. Однопериодовая модель и модель повторяющегося взаимодействия.
- •Вопрос 58: Модель доминирующего лидера.
- •Вопрос 59: Монополистическая конкуренция как рыночная структура. Проблема эффективности.
- •Вопрос 60: Модель монополистической конкуренции э. Чемберлина
- •Вопрос 61: Модель индивидуального предложения труда.
- •Вопрос 62: Существование и стабильность общего равновесия.
- •Вопрос 63: Условия достижения общего равновесия.
- •Вопрос 64: Общее равновесие и эффективность в обмене.
- •Вопрос 65-66: Общее равновесие и эффективность в производстве. Эффективность структуры выпуска.
- •Вопрос 67: Первая и вторая теоремы экономики благосостояния.
- •Вопрос 68: Потребительский выбор в условиях неопределенности.
- •Вопрос 69: Функция ожидаемой полезности.
- •Вопрос 70: Особенности поведения расположенных к риску, нерасположенных к риску и нейтральных к риску экономических субъектов.
- •Вопрос 71: Измерение риска. Плата за риск.
- •Вопрос 72: Методы снижения риска: диверсификация, страхование, приобретение информации.
Вопрос 15: Выявленные предпочтения и анализ индексов реального дохода и цен.
Предположим,
что мы рассматриваем потребительские
наборы некоего потребителя в разные
периоды и хотим выяснить, как изменилось
потребление с одного периода до другого.
Пусть b обозначает базисный период, а t
— какой-то другой период. Как сравнить
"среднее" потребление в году t и
потребление в базисном году?Пусть
в период t цены равны (
)
и потребитель выбирает набор (
).
В базисном периоде b цены равны (
)
и выбор потребителя представлен набором
(
).
Нас интересует, как изменилось "среднее"
потребление данного потребителя. Если
обозначить через w1 и w2 некие
"веса", используемые для формирования
среднего, то можно рассмотреть индекс
объема следующего вида:
Iq
=
.
Если Iq больше 1, можно утверждать, что "среднее" потребление с периода b до периода t возросло; если Iq меньше 1, можно говорить о снижении "среднего" потребления. Если взять в качестве весов цены базисного периода, получим индекс, именуемый индексом Ласпейреса, а если взять цены периода t, получим индекс Пааше. С помощью обоих указанных индексов дается ответ на вопрос, что произошло со "средним" потреблением, однако, для усреднения в них используются разные веса. Подстановка в приведенный выше индекс объема в качестве весов цены периода t дает индекс объема (или индекс реального дохода) Пааше, имеющий вид
Pq
=
,
а подстановка цен периода b — индекс объема (или индекс реального дохода) Ласпейреса, имеющий вид
Lq
=
.
Допустим, мы рассматриваем ситуацию, в которой индекс реального дохода Пааше больше 1:
Pq = > 1.
Перекрестное перемножение частей данного неравенства дает неравенство
+
>
+
,
которое
показывает, что благосостояние потребителя
должно быть выше в момент t, нежели в
момент b, поскольку в ситуации t он мог
бы потребить потребительский набор b,
но предпочел не делать этого. Что, если
индекс реального дохода Пааше меньше
1? Тогда мы имели бы неравенство
+
<
+
,
показывающее, что
когда потребитель выбрал набор (
),
набор (
)
не был ему доступен. Это, однако, ничего
не говорит нам о приоритетах потребителя
в отношении указанных наборов. Если
нечто стоит больше, чем вы можете
позволить себе заплатить, это вовсе не
означает, что вы предпочитаете это нечто
тому, что вы потребляете в настоящий
момент. А что можно сказать по поводу
индекса реального дохода Ласпейреса?
Он используется аналогичным образом.
Предположим, что индекс реального дохода
Ласпейреса меньше 1:
Lq = .< 1.
Перекрестное умножение даст нам неравенство
+
<
+
,
говорящее о том, что ( ) выявленно предпочитается ( ). Таким образом, благосостояние потребителя выше в момент b, чем в момент t.
Индексы цен используются примерно таким же образом. Вообще, индекс цен — это взвешенная средняя цен:
Ip
=
.
В этом случае естественно выбрать в качестве весов для расчета средние количества товаров. Мы получим два разных индекса в зависимости от того, что выбрать в качестве весов. Если весами выбраны количества товаров в период t, мы получаем индекс цен Пааше:
Pp
=
,
а если весами выбраны количества товаров базисного периода, получаем индекс цен Ласпейреса:
Lp
=
.
Предположим, что индекс цен Пааше меньше 1. Выявленные предпочтения не говорят об этом ничего. Проблема заключается в том, что теперь в числителе и в знаменателе дробей, образующих индексы, стоят разные цены, так что сравнение с позиций выявленных предпочтений произвести невозможно. Введем новый индекс изменения общих расходов (именуемый также индексом номинального дохода), определив его как
M
=
.
Это отношение общих расходов периода t к общим расходам периода b.
Допустим теперь, что индекс цен Пааше больше M. Это означает, что
Pp
=
>
.
+ > + .
Это неравенство говорит о том, что набор, выбранный в году b, выявленно предпочитается набору, выбранному в году t. Из данного анализа следует, что если индекс цен Пааше больше индекса номинального дохода, то благосостояние потребителя должно быть выше в году b, чем в году t. Аналогичное утверждение можно сделать и в отношении индекса цен Ласпейреса. Если индекс цен Ласпейреса меньше M, то благосостояние потребителя в году t должно быть выше, чем в году b. В случае индексов цен важно не то, больше или меньше данный индекс единицы, а то, больше он или меньше индекса номинального дохода.
