
- •.Рух і його форми. Енергія та її види. Предмет термодинаміки. Робочі тіла. Поняття про ідеальні та реальні гази. Мета введення поняття про ідеальний газ
- •Ентальпія. Потенційна енергія тиску. Їх фізичний зміст.
- •Теплота і робота. Їх фізичний зміст та обчислення. Робота розширення та стиснення. Позитивний і негативний напрямок теплоти і роботи. Термодинамічна система та її типи.
- •Перший закон термодинаміки, його зміст, основні формулювання. Принципи еквівалентності енергії. Математичний вираз першого закону термодинаміки в різних формах
- •Вільна і зв’язана енергія робочого тіла. Поняття про енергію. Енергія Гельмгольца і енергія Гіббса. Їх фізичний зміст і математичні залежності. Енергетична модель робочого тіла.
- •Термодинамічний стан. Параметри стану. Термодинамічний метод. Екстенсивні та інтенсивні параметри стану. Питомі та мольні термодинамічні величини. Рівноважні та нерівноважні стани.
- •Чотири загальні властивості параметрів стану.
- •Термодинамічні потенціали. Чотири потенціали Гіббса. Диференційні рівняння термодинамічних потенціалів.
- •Теплоємність системи (робочого тіла). Питома теплоємність, фізичний зміст, одиниці виміру, залежність між питомими теплоємностями. Залежність теплоємності газу від температури.
- •Середня та дійсна теплоємність. Визначення середньої теплоємності газу при криволінійній та прямолінійній залежності її від температури
- •Середня уявна молекулярна маса, газова постійна. Густина та питомий об’єм суміші ідеальних газів, парціальних тиск компонентів сумішей ідеальних газів, співвідношення для їх знаходження.
- •Властивості реальних газів. Рівняння Ван Дер Ваальса для 1 кг газу. Внутрішній молекулярний тиск газу. Зміст константи в рівнянні Ван Дер Ваальса.
- •Термодинамічний процес. Рівноважний та нерівноважний процес. Графічний метод дослідження процесу. Прямий і зворотній процеси.
- •Оборотний та необоротний процеси. Умови проходження оборотних процесів. Облік незворотності в дійсних процесах.
- •Визначення значень зміни внутрішньої енергії, ентальпії та ентропії робочого тіла при зміні його стану.
- •Графічний метод вивчення термодинамічних процесів. Pv та ts –діаграми та їх властивості.
- •Ентропія робочого тіла. Фізичний зміст. Розмірність. Математичний вираз.
- •Характеристики термодинамічного процесу. Теплота і робота. Властивості їх диференціалів. Графічне зображення для розімкнутих та кругових процесів.
- •Характеристики термодинамічного процесу. Коефіцієнт перетворення енергії в процесаі (кпе). Коефіцієнт використання термодинамічного потенціалу в процесі (квп).
- •Ізохорний процес в ідеальних газах
- •Ізобарний процес в ідеальних газах
- •Політропний процес в ідеальних газах. Залежність для зміни параметрів стану робочого тіла
- •Обчислення роботи. Значення політропи для основних термодинамічних процесів. Визначення показника ступеня політропи.
- •Другий закон термодинаміки, його зміст та основні формулювання. Умови перетворення теплоти в роботу в безперервно діючому тепловому двигуні.
- •Кругові процеси чи цикли. Цикли прямі та зворотні, оборотні та необоротні. Термічний ккд циклу.
- •Прямий оборотний цикл Карно. Зображення циклу на pv та ts –діаграмах: вивести вираз для термічного ккд циклу. Аналіз циклу на основі виразу термічного ккд.
- •Зворотний оборотний цикл Карно. Холодильний коефіцієнт.
- •Теорема Карно.
- •Узагальнений (регенеративний цикл) Карно та його ккд. Необоротний цикл Карно та його ккд.
- •Властивості оборотного циклу. Перший та другий інтеграл Клаузіуса.
- •Зміна ентропії ізольованої кінцевої системи при оборотних на необоротних процесах. Математичний вираз другого закону термодинаміки. Принцип зростання ентропії.
- •Ексергія теплоти та фізичний зміст ентропії. Рівняння Гюі-Стодоли. Визначення зміни ексергії в основних термодинамічних процесах. Ексергетичний ккд.
- •Водяна пара як реальний газ.
- •Ентропія води, вологої та сухої, насиченої та перегрітої пари. Їх знаходження.
- •Знаходження питомого об’єму та густини вологої насиченої пари. Знаходження ентальпії та внутрішньої енергії вологої насиченої перегрітої пари.
- •Hs діаграма водяної пари, її побудова та застосування. Визначення параметрів стану вологої насиченої, сухої насиченої та перегрітої пари на hs діаграмі.
- •Ізобарний процес зміни стану водяної пари. Зображення процесу на pv, hs та ts діаграмах. Визначення роботи зміни внутрішньої енергії та параметрів стану пари.
- •Адіабатний процес зміни стану водяної пари. Зображення процесу на pv, hs та ts діаграмах. Визначення роботи зміни об’єму та параметрів стану.
- •Рівняння першого закону термодинаміки для потоку, фізичний зміст кожного члена рівняння, різні форми рівняння.
- •Швидкість витоку ідеального газу при адіабатному процесі. Рівняння для його визначення та аналізу. Швидкість витоку водяної пари та її визначення.
- •Секундна витрата ідеального газу при витоку. Рівняння для визначення та його аналіз. Гіпотеза Сен-Венана. Критичне відношення тисків при витоку ідеальних газів, рівняння для його визначення.
- •Вибір профілю сопла в залежності від критичного відношення тисків. Виток газу через комбіноване сопло. Розрахунок комбінованого сопла.
- •Витоки водяної пари та його особливості. Визначення швидкості водяної пари при різних умовах. Виток газів та пари при наявності тертя.
- •Дослідження дроселювання водяної пари різних станів по hs діаграмі.
- •Термодинамічні основи роботи поршневого компресора. Зображення роботи одноступінчатого компресора на pv діаграмі при ізотермічному, адіабатному та політропному стиску газу.
- •Робочий процес багатоступінчастого поршневого компресора. Зображення теоретичного робочого процесу триступінчастого компресора на pv та ts –діаграмах.
- •Що призвело до появи двигунів внутрішнього згорання(двз). На які групи діляться поршневі двз та яке паливо в них використовується? Індикаторна діаграма двз. Термодинамічний метод вивчення двз.
- •Причини виникнення двз зі змішаним згоранням палива. Теоретичний цикл цих двигунів. Зображення циклу в pv та ts –діаграмах, характеристики циклу, термічний ккд циклу, аналіз ккд циклу.
- •Принципова схема паросилової установки, що працює по циклу Ренкіна. Зображення циклу в pv та ts –діаграмах.
- •Вплив початкових та кінцевих параметрів пари на ккд циклу паросилової установки. Дати аналіз з використанням hs –діаграми. Відносний внутрішній ккд циклу.
- •Принципова схема паросилової установки, що працює по теплофікаційному циклу. Зображення циклу в pv та ts –діаграмах. Коефіцієнт використання теплоти циклі, порівняння з конденсаційним циклом.
- •Цикл газотурбінної установки(гту). Переваги гту перед двз. Термічний ккд гту.
- •Вологе повітря. Визначення. Абсолютна та відносна вологість, вологоємність. Точка роси. Hd –діаграма вологого повітря. Основні процеси вологого повітря в hd –діаграмі.
- •Відмінність паротурбінної установки від двз. Цикл Карно для насиченої пари.
- •Цикл паротурбінної установки з проміжним перегрівом пари. Економічність проміжного перегріву пари. Термічний ккд циклу, факти, які впливають на його величину.
- •Регенеративний цикл паросилової установки. Ціль використання. Ефективність застосування циклу. Питома витрата пари для регенеративного циклу.
- •Цикл теплового насосу. Доцільність використання теплового насосу. Опалювальний коефіцієнт. Його визначення. Переваги використання теплового насосу.
- •Цикл теплового насосу. Призначення та область застосування теплових насосів. Опалювальний коефіцієнт та його визначення
.Рух і його форми. Енергія та її види. Предмет термодинаміки. Робочі тіла. Поняття про ідеальні та реальні гази. Мета введення поняття про ідеальний газ
Технічна термодинаміка - це наука, яка вивчає енергію. Рух – форма існування матерії. Енергія - кількісна міра руху. Існує багато форм руху: хаотичний, направле-ний, хімічний, внутрішньомолекулярний. Кожній формі руху відповідає свій вид ене-ргії: хаотичний – теплота, направлений – робота, в хімічних сполуках – хімічна енер-гія. Кожній науці, які вивчає технічна термодинаміка, відповідає свій вид руху та, відповідно, енергії:
електротехніка - напрямлений рух електронів;
механіка - механічна форма ру-ху, механічна енергія;
квантова механіка - рух малих частинок речовини;
хімічна термодинаміка – хімічна енергія.
Технічна термодинаміка розглядає хаотичний і направлений рухи.
Хаотичним називається рух, під час якого молекули газу рухаються в різних напрямках, і ні один із них не є переваж-ним.
Завдяки хаотичному рухові газ має такі дві властивості:
1. Він діє на всі стінки посудини, в якій він знаходиться, з однаковою силою.
2. Газ рівномірно заповнює весь об'єм, в якому він знаходиться.
Направлений рух – це рух, в якому мак-рочастини газу рухаються в певному нап-рямку.
В природі енергія в своїй більшості знаходиться в одних видах (переважно, в хімічному), а використовує людство її в інших видах (теплову та електричну). Перехід одного виду енергії в інший проходить через наявність фізичних тіл, які є носіями енергії і приймають участь у перетворенні одного виду енергії в інший. Такі фізичні тіла називаються робочими тілами. Це, як правило, газоподібні або рідинні тіла. Технічна термодинаміка в основному розглядає газоподібні робочі тіла. Повітря є одним із робочих тіл. Газоподібні тіла, в яких діють лише сили щеплення між молекулами, а самі молекули являють собою матеріальні точки, що не мають об’єму. Вивчення властивостей реальних газів приводить до отримання складних математичних залежностей, які неможливо використати в інженерних розрахунках, тому введено поняття ідеального газу.
Ідеальним називається газ, у якого відсутні сили щеплення між молекулами, а самі молекули являють собою матеріальні точки, що не мають об’єму. Чим нижчий тиск і вища температура, при яких знаходиться реальний газ, тим більше він наближається до ідеального.
Предмет технічної термодинаміки – виявлення законів взаємного перетворення енергії хаотичного і направленого руху, а також властивостей робочих тіл. Газоподібні тіла розглядаються реальні та ідеальні.
Реальний газ – газ, у якого існують сили щеплення між молекулами, а самі молекули є тіла, що не мають об’єму. Вивчаючи властивості реальних газів, отримують складні математичні залежності, які непридатні для інженерних розрахунків, тому введене поняття ідеального газу, тобто газу, в якому відсутні сили щеплення між молекулами, а молекули не мають об’єму. Чим нижчий тиск і вища температура, при яких знаходиться реальний газ, тим більше він наближається до ідеального.