
- •1. Понятие случайного эксперимента. Пространство элементарных событий. Достоверное и невозможное событие.
- •Пространство элементарных событий.
- •2. Операции над событиями (сумма, разность, произведение). Совместные и несовместные события. Противоположное событие. Совместные и несовместные события.
- •Операции над событиями (сумма, разность, произведение).
- •3. Свойства операций над событиями.
- •4. Алгебра и сигма-алгебра событий.
- •5. Классическое определение вероятности события.
- •6. Статистическое определение вероятности события.
- •7. Геометрические вероятности.
- •Аксиоматическое построение теории вероятностей.
- •8. Понятие о полной группе событий.
- •9. Формула сложения вероятностей для совместных и несовместных событий
- •10. Условная вероятность. Формула умножения вероятностей. Независимость событий.
- •Формула умножения вероятностей.
- •Независимость событий.
- •11. Формула полной вероятности.
- •12. Формула Байеса
- •13. Основные понятия комбинаторики. Правила суммы и произведения. Перестановки, размещения, сочетания и формулы для их вычисления.
- •Правила суммы и произведения.
- •14. Схема независимых испытаний Бернулли. Наивероятнейшее число наступления событий в схеме Бернулли.
- •15. Теорема Пуассона.
- •16. Локальная теорема Муавра –Лапласа.
- •17. Интегральная (глобальная) теорема Муавра – Лапласа.
- •18. Случайная величина и ее функция распределения. Свойства функции распределения.
- •19. Непрерывные и дискретные случайные величины.
- •Закон распределения дискретной случайной величины.
- •20. Математическое ожидание случайной величины и его свойства. Математическое ожидание характеризует среднее ожидаемое значение случайной величины, т.Е. Приближенно равно ее среднему значению
- •21. Дисперсия случайной величины и ее свойства.
- •23. Биномиальное распределение, его математическое ожидание и дисперсия.
- •24. Распределение Пуассона, его мат. Ожидание и дисперсия
- •25. Равномерное распределение, его мат. Ожидание и дисперсия.
- •26. Показательное распределение, его мат.Ожидание и дисперсия.
- •27. Нормальное распределение. Свойства функции Гаусса
- •Свойства функции Гаусса.
- •28. Функция Лапласа и ее свойства. Вероятность попадания нормальной случайной величины в заданный интервал.
- •Функция Лапласа и ее свойства.
- •29. Отклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- •30. Совместная функция распределения двух случайных величин. Независимые случайные величины. Мат. Ожидание и дисперсия независимых случайных величин.
- •Свойства совместной функции распределения двух случайных величин
- •Независимые случайные величины
- •Для независимых случайных величин справедливы соотношения
- •31. Плотность совместного распределения вероятностей непрерывной двумерной случайной величины и ее свойства.
- •Свойства двумерной плотности вероятности
- •32. Корреляционный момент и коэффициент корреляции.
- •Выборочный метод и его основные понятия. Случайная выборка, объем выборки.
- •34. Вариационный ряд для дискретных и непрерывных случайных величин. Полигон и гистограмма.
- •35. Эмпирическая функция распределения и ее свойства.
- •36. Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок.
- •37. Выборочные среднее и дисперсия.
- •38. Надежность и доверительный интервал.
- •39. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- •40. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии.
- •41. Доверительный интервал для оценки среднего квадратического отклонения нормального распределения.
- •42. Проверка статистических гипотез. Нулевая и альтернативная гипотезы, статистический критерий. Ошибки первого и второго рода.
- •43. Этапы проверки статистической гипотезы.
- •44. Критерий согласия Пирсона о виде распределения.
- •45. Понятие о регрессионной зависимости случайных величин. Парная и множественная регрессии.
- •46. Выборочные уравнения регрессии.
- •47. Линейная регрессия. Нахождение коэффициентов линейной регрессии методом наименьших квадратов.
- •48. Понятие о множественной линейной регрессии.
- •49. Корреляционная матрица.
- •54. Нелинейная регрессия. Логарифмическая, обратная, степенная, и показательные модели нелинейной регрессии.
- •55. Понятие о цепях Маркова. Однородные цепи Маркова. Переходные вероятности. Матрица перехода.
- •56. Равенство Маркова. Расчет вероятностей состояния системы с использованием матрицы перехода.
- •57. Понятие о цепях Маркова с непрерывным временем.
- •58. Уравнения Колмогорова. Финальные вероятности цепей Маркова с непрерывным временем.
- •59. Понятие о схеме гибели и размножения. Расчет вероятностей состояний.
- •60. Понятие о системах массового обслуживания.
1. Понятие случайного эксперимента. Пространство элементарных событий. Достоверное и невозможное событие.
Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий. Пример – лед плавится при температуре выше нуля.
Невозможным называют событие, которое заведомо не произойдет при выполнении определенной совокупности условий. Пример – лед не может существовать при 100 градусах Цельсия, Земля не может без влияния извне прекратить свое вращение.
Случайным называют событие, которое при осуществлении совокупности условий может произойти, либо не произойти. Пример – выпадение определенного числа очков при бросании игральной кости, попадание снаряда в цель, выход из строя технического устройства, получение определенной прибыли фирмой и т.п.
Эксперимент считается случайным, если он может закончиться любым из некоторой совокупности известных результатов, но до осуществления эксперимента нельзя сказать каким именно. ТВ исследует именно случайные эксперименты, вернее модели экспериментов со случайными исходами. При этом рассматриваются только такие эксперименты, которые можно повторять (воспроизводить) при неизменном комплексе условий произвольное число раз (по крайней мере теоретически).
Пространство элементарных событий.
Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий (омега), а сами элементарные события – точками пространства .
Пространство элементарных событий обычно считается заданным, если указаны все его элементы.
Из
элементарных исходов можно составить
более сложное событие. Иными словами,
каждое случайное событие А определяется
как подмножество в множестве элементарных
событий
.
2. Операции над событиями (сумма, разность, произведение). Совместные и несовместные события. Противоположное событие. Совместные и несовместные события.
Два события называются совместными в данном опыте, если появление одного из них не исключает появления другого.
Два события называются несовместными в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.
Равновозможными называются, если по условиям симметрии есть основание считать, что ни одно из них объективно не является более возможным, чем другие.
Операции над событиями (сумма, разность, произведение).
(
)
–
сумма событий.
Это событие, состоящее в том, что произошло
хотя бы одно из двух событий
или
.
В общем случае, под суммой нескольких
событий понимается событие, состоящее
в появлении хотя бы одного из этих
событий.
(
)
–
произведение
событий.
Это событие, состоящее в совместном
осуществлении событий
и
.
В общем случае, под произведением
нескольких событий понимается событие,
состоящее в одновременном осуществлении
всех этих событий. События
и
несовместны, если произведение их есть
событие невозможное, т.е.
.
–
разность
событий. Это
событие, состоящее из исходов, входящих
в
,
но не входящих в
.
Оно заключается в том, что происходит
событие
,
но при этом не происходит событие
Противоположным
(дополнительным)
для события
(обозначается
)
называется событие, состоящее из всех
исходов, которые не входят в
.
Наступление события означает просто что событие не наступило.